マガジンのカバー画像

CV

146
運営しているクリエイター

2024年8月の記事一覧

図面読み取りに革命!生成AIが生産性を加速させる【データ利活用の道具箱 #13】

図面読み取りに革命!生成AIが生産性を加速させる【データ利活用の道具箱 #13】

はじめに最近、生成AI(生成モデルを用いた人工知能)の進化が目覚ましく、皆さんの周りでもよく話題に上がっていると思います。

特に自然言語処理や画像認識、画像生成で高い精度を出しており、多くの業界で実際に活用され始めています。
例えば多様な設備を扱う製造業や建設業では、図面に描かれた設備間の流れや関係性を読み取って追跡するのに苦労することが多いですが、まだ生成AIの導入は進んでいません。

現状図

もっとみる
綺麗&早い背景除去モデル「BiRefNet」を試してみる

綺麗&早い背景除去モデル「BiRefNet」を試してみる

BiRefNetとは色々お世話になることが多い背景除去モデル。BiRefNetはまさしく新しく出たモデルとのことでちょい話題になっていたので試してみようと思います。
1024x1024 画像の推論には 5.5G GPU メモリが必要とのこと。ありがたさの極み、MITライセンスでした。

🌐プロジェクトページ💪早速試してみるということでデモ画面がこちら。

で早速試したものがこちらです!

スラ

もっとみる
画像やビデオ内のオブジェクトをセグメント化するモデル「EVF-SAM2」を試してみる

画像やビデオ内のオブジェクトをセグメント化するモデル「EVF-SAM2」を試してみる

EVF-SAM2とはEVF-SAM はSAM2 とテキスト プロンプトを使用してビデオ内のオブジェクトをセグメント化してくれるモデルです。
いままでのSAMではできなかったけど、EVF-SAM2リリースによって精度高く可能になったということで試してみました!

🌐プロジェクトページ類📸写真を試してみる

segment-anything-2で遊ぶメモ

segment-anything-2で遊ぶメモ

このメモを読むと

・segment-anything-2を試せる
・動画からオブジェクトを抜き出せる

検証環境

・OS : Ubuntu 22.04(WSL on Windows11)
・Mem : 64GB
・GPU : GeForce RTX™ 4090
・ローカル
・python 3.10.12
・2024/8/B時点

segment-anything-2Meta(旧Facebook

もっとみる
SAM2をUltralyticsで試してみた

SAM2をUltralyticsで試してみた


概要YOLOv8等が利用できる Ultralytics がSAM2をサポートしたので試してみました。

SAM2の tiny ~ large サイズの重みを利用できます。

画像や動画のセグメンテーションが可能です。

YOLOv8等の物体検出モデルを組み合わせたセグメンテーションの自動アノテーション関数が利用できます。

タイトルの通り本記事はUltralytics上のSAM2を利用しています

もっとみる
動画も高精度に!ComfyUIとSegment Anything Model 2(SAM 2)でセグメンテーションをマスターしよう

動画も高精度に!ComfyUIとSegment Anything Model 2(SAM 2)でセグメンテーションをマスターしよう

コンピュータビジョンの世界に革命をもたらした画像セグメンテーションモデル「Segment Anything Model(SAM)」。その登場から約1年、METAが新たな進化を遂げた「Segment Anything Model 2(SAM 2)」を発表しました。画像だけでなく動画にも対応したこの最新モデル、使い方によってはかなり実用的になり得るでしょう。
本記事では、SAM 2の特徴や機能、そして

もっとみる
Segment Anything Model2(SAM2),Meta AIを使ってみた

Segment Anything Model2(SAM2),Meta AIを使ってみた

先日紹介しましたSAMは、画像認識のモデルでした。
2024年7月29日に発表がありましたSAM2は、動画と画像の両方を認識できるモデルになります。

SAM2のデモサイトのリンクは↓の通りです。

SAMとの違い
SAMは画像認識だけだったので、SAM2は動画も認識できるようになりました。
以下の画像の通り、動画で流れている途中で分類したい箇所を選択して再送すると、その後も分類された状態になりま

もっとみる
YOLOv8の転移学習で漫画画像の人物検出をしてみる

YOLOv8の転移学習で漫画画像の人物検出をしてみる


概要機械学習に興味があった&私的な理由で漫画画像の人を検出する必要があったので、機械学習を使って漫画画像内の人物検出を作ってみました。
作ったアプリはこちら↓

※対応画像ファイルはjpg,png,gif

開発環境Python3
Macbook M1 MAX
Render

事前調査画像内の人物検出をするにあたり、YOLOを使うといいよという事をアドバイスいただいたのでこれを使うことに。
YO

もっとみる
Google Colab で SAM 2 を試す

Google Colab で SAM 2 を試す

「Google Colab」で「SAM 2」を試したのでまとめました。

1. SAM 2「SAM 2」(Segment Anything Model 2) は、画像や動画のセグメンテーションを行うためのAIモデルです。目的のオブジェクトを示す情報 (XY座標など) が与えられた場合に、オブジェクトマスクを予測します。

具体的に何ができるかは、以下のデモページが参考になります。

2. セットア

もっとみる
Google Colab で Florence 2 を試す

Google Colab で Florence 2 を試す

「Google Colab」で「Florence 2」を試したので、まとめました。

1. Florence 2「Florence 2」は、Microsoftが開発した軽量なVLM (Vision Language Model) です。キャプション、物体検出、OCRなど、さまざまなビジョンタスクを単一モデルで処理することができます。

2. Colabでの実行Colabでのセットアップ手順は、次の

もっとみる
多角形カーネルに対応した統計的画像フィルタアルゴリズムの高速化

多角形カーネルに対応した統計的画像フィルタアルゴリズムの高速化

2023年度研究会推薦博士論文速報
[コンピュータグラフィックスとビジュアル情報学研究会]

諸戸雄治
((株)Preferred Networks Software Engineer/(株)オー・エル・エム・デジタル 研究開発部門 Visiting Researcher/情報オリンピック日本委員会 育成強化部会)

【背景】画像や動画の共有サイトの普及により,映像や画像を編集することが一般的にな

もっとみる
Label-Efficient Microscopy Image Recognition with Cell Image Characteristics

Label-Efficient Microscopy Image Recognition with Cell Image Characteristics

2023年度研究会推薦博士論文速報
[コンピュータビジョンとイメージメディア研究会]

西村 和也
(国立がん研究センター研究所 計算生命科学ユニット 特任研究員)

邦訳:細胞画像特性を用いたラベル効率の良い顕微鏡画像認識

【背景】深層学習により顕微鏡画像の認識が高精度に実現可能になった
【問題】深層学習には撮影環境毎に学習データが必要である
【貢献】細胞画像の特性を活用することにより学習デー

もっとみる
深層学習を用いた偏りのあるデータに対して頑健な学習手法に関する研究

深層学習を用いた偏りのあるデータに対して頑健な学習手法に関する研究

2023年度研究会推薦博士論文速報
[コンピュータビジョンとイメージメディア研究会]

加藤 聡太
((株)センスタイムジャパン リサーチャー)

【背景】実世界のデータには多くの場合偏りが含まれる
【問題】データの偏りによって予測精度が大幅に下がる傾向にある
【貢献】さまざまな偏りに対して頑健な,深層学習の新たな学習手法を提案した

 近年,画像内に写っている物体を理解する画像認識の分野では,A

もっとみる
高解像度空撮画像・映像を用いた建物被害検出モデルの開発

高解像度空撮画像・映像を用いた建物被害検出モデルの開発

2023年度研究会推薦博士論文速報
[情報システムと社会環境研究会]

藤田 翔乃
(国立研究開発法人防災科学技術研究所 研究員)

【背景】地震災害時には多くの建物に被害が生じる
【問題】災害のデータは少ないためモデル構築が困難である
【貢献】災害対応に有効な建物被害検出モデルを開発した

 地震災害時には,建物の被害情報は市町村の役所などの災害対応業務にとって重要な情報である.日本では,過去の

もっとみる