マガジン

  • ML Enablement Magazine

    データサイエンスをプロダクトマネジメントに活かす知見をまとめたマガジンです。ChatGPT などの生成系AIもトピックとして含みます。 世界的なプロダクトマネージャーらの講演や記事からデータサイエンスを役立てるための知見を幅広にまとめています。 AWS が GitHub で無料で公開している ML Enablement Workshop の内容や更新情報もお届け。 https://github.com/aws-samples/aws-ml-enablement-workshop

  • 実践ESG開示

    ESG開示を実践していくための記事

  • エンジニアによる企業評価入門

    エンジニアの技術で企業評価を行います。

最近の記事

AWS Solutions Architect Professional に合格に、生成 AI はどう役立ったか

試験日は 9/22 でこの記事を書いている 1 ヵ月くらい前になってしまったが、めでたく試験を通過することができた。試験のきっかけは Associate が期限切れになるのでせっかくだからもう一つ上にチャレンジしようかな、と軽く始めたのだが難易度的に気軽にやるものではなかった。 試験勉強は 3 ヵ月ぐらい前から始めた。 Udemy のコースを購入し学習を始め、 7 月→ 8 月で模擬試験のテストスコアが全く変わらないことに焦りを抱き 9 月から「間に合うか・・・ ??」と思

    • "事例でわかるMLOps:機械学習の成果をスケールさせる処方箋"執筆に込めた意図

      本記事を執筆している中、重版決定の報を頂きました。書籍の著者の一人としてうれしい限りです。本書は MLOps の技術にとどまらずカルチャーにも踏み込んでいる点、理論だけで実践にも踏み込んでいる点で今までにない書籍になっています。私はカルチャーの実践として AWS が公開している ML Enablement Workshop の 10 社超への提供経験をもとに本書の 9 章である「機械学習プロジェクトの失敗確率 80% を克服するプラクティス」の執筆を担当させていただきました。

      • 生成AI時代のプロダクト開発プロセス改善 - Working Backwards と Value Discovery で実践

        2024/7/16 に、 AWS Startup Community と PM DAO が共同開催した「生成AIと進める:プロダクト開発伴走プログラム」が7月16日に開催され、大変好評のうちに終了しました。 イベントには9社30名ほどが参加し、満足度は5段階評価で4.4と非常に高い評価を得ました。本イベントでは、Amazon の Working Backwards を使った ML Enablement Workshop のプログラムと PM DAO の Value Disco

        • AI/ML活用の勝ちパターンを学ぶ!AWS の人気ワークショップがAmazon流に生まれ変わり登場

          AWS は 2024 年 6 月 20 日、プロダクトで AI/ML を活用するためのワークショップ「ML Enablement Workshop version2」を AWS Summit にて発表しました。本ワークショップはすでに 2 社への提供実績があり、参加者から高い評価を得ています。また、 GitHub の Star はすでに 400 を超えています。 本記事では、ML Enablement Workshop を初めて知った!という方も知っていたかたにも、新バー

        AWS Solutions Architect Professional に合格に、生成 AI はどう役立ったか

        • "事例でわかるMLOps:機械学習の成果をスケールさせる処方箋"執筆に込めた意図

        • 生成AI時代のプロダクト開発プロセス改善 - Working Backwards と Value Discovery で実践

        • AI/ML活用の勝ちパターンを学ぶ!AWS の人気ワークショップがAmazon流に生まれ変わり登場

        マガジン

        • ML Enablement Magazine
          20本
        • 実践ESG開示
          5本
        • エンジニアによる企業評価入門
          3本

        記事

          葬送のフリーレンが示唆する「成功」よりも「幸せ」なプロダクトマネジメント

          人生は成功した後の方が長く、プロダクトはマーケットフィットした後の方が長い。「プロダクトマネジメントのすべて」に代表されるプロダクトマネジメントの手法は、成功後の長い時間を「幸せ」なものにするには適さないのではないかということを「葬送のフリーレン」を読んでいて感じたので、雑記としてまとめています。現段階で定量及び定性面の裏付けはそれほどとっていないため、筆者のバイアスがかかった記事であることをあらかじめ付記しておきます。葬送のフリーレンについては本記事内で多少言及しますが、ネ

          葬送のフリーレンが示唆する「成功」よりも「幸せ」なプロダクトマネジメント

          なぜ私たちはチームを組織するのか : 問題解決プロセスが問題を解決しない理由

          問題解決プロセスについて書かれた書籍が出版される一方で、身の回りの未解決問題は年々増えていると感じます。私は AWS の Developer Relations として機械学習に関わる仕事をしており、 80% に登る機械学習プロジェクトの失敗確率はまだ解決されない問題です。生成 AI をはじめとした先進的技術も登場しているにもかかわらず、それらが軽やかに問題解決する場面を目にしたことがまだありません。なぜなのか ? を本記事で考察します。 数冊の書籍と自分自身の経験から、問

          なぜ私たちはチームを組織するのか : 問題解決プロセスが問題を解決しない理由

          生成AIが活きるプロダクト体験を発見する鍵 -24のバリューキャンバスの分析から見えたもの

          生成 AI の活用を考える企業の約 6 割が活用イメージが沸いていないという報告があります。顧客の求めるものを理解したうえでどう生成 AI を活かすのか? 答えを導くべく都内某所 ( 目黒 ) で熱のこもったワークショップが開催されました。 2024 年 3 月 19 日に開催された「プロダクトを成長させる生成 AI のユースケース発見ワークショップ vol.3」では、参加者がバリューキャンバスという手法を使い動画配信サービスを題材に生成 AI で体験を革新するアイデアを可

          生成AIが活きるプロダクト体験を発見する鍵 -24のバリューキャンバスの分析から見えたもの

          2023年の振り返りと2024年の抱負

          AWS の機械学習領域 Developer Relations として 2 年目を終えました。2023年は認知をとれる勝ち筋にこだわりたい、と年の冒頭述べていました。そんな 2023 年は ChatGPT が台頭する中 Amazon Bedrock の影もない逆境から始まったわけですが、AWS の勝ち筋はとれたのか ? が重要な問いになります。 現状評価としては、方向性は見えつつも状況が変わったと認知されるには最短であと 1~2 年必要かと考えています。会社の中期経営計画は

          2023年の振り返りと2024年の抱負

          コミュニティの力でAIをプロダクトに組み込むアイデアに磨きをかけよう

          「生成系 AI でプロダクトを革新せよ」そんなミッションを背負うことになったプロダクトマネージャーは急速に増えていると思います。とはいえ安全性や安定性の懸念もあり、なによりアイデアを考える時間がとれない・・・プロダクト筋トレで実施したアンケートから見えた課題を解決すべく、前回プロダクトを成長させる生成系 AI のユースケースを考えるワークショップを開催しました。満足度は 5 段階中 4.8 、他の人にお勧めする度合いも 4.5 と非常に好評なイベントとなりました。詳細は次の

          コミュニティの力でAIをプロダクトに組み込むアイデアに磨きをかけよう

          共感でチームの境界をつなぐコミュニケーション手法 : NVC

          開発部門と営業部門、事業部門と IT 管理部門など衝突が起こりやすいチームは企業の各所にあります。私は AWS の Developer Relations として機械学習や生成系 AI のプロダクト利用を支援するための ML Enablement Workshop を推進しており、本ワークショップではプロダクトマネージャー、開発者、データサイエンティストに「チーム横断」で参加いただいています。異なるチームに所属する方々の連携を促す方法を探る中で、 NVC (NonViolen

          共感でチームの境界をつなぐコミュニケーション手法 : NVC

          「プロダクトを成長させる生成系 AI のユースケースを考えるワークショップ」を開催しました。

          2023/10/18 に、プロダクト筋トレコミュニティ主催で「プロダクトを成長させる生成系 AI のユースケースを考えるワークショップ」を開催しました。イベントには 32 名が登録し 21 名が参加、満足度は 5 段階中 4.8 、他の人にお勧めしたい度合いは 4.5 と非常に好評なイベントとなりました。 ワークショップで作ったアウトプットでコミュニティ内の Slack が盛り上がる、AWS としても ML Enablement Workshop の提供希望をいただくなど、

          「プロダクトを成長させる生成系 AI のユースケースを考えるワークショップ」を開催しました。

          マッキンゼーのレポートに見る企業応用を促進する大規模言語モデルの評価方法

          2023 年に大規模言語モデルは多数発表されていますが、どれを選べばよいかは依然として曖昧です。その理由の一つにユースケースと評価方法のミスマッチがあると考えています。例えば、営業メールの草案を生成するモデルを選ぶとき、質問回答データセットの評価結果がどれだけ意味があるかは不透明です。誰かにメールを書いてもらいたいとき、東海道新幹線の速度について知っていることを基準にするか ? という話です。 本記事では、マッキンゼーが公開した The state of AI in 202

          マッキンゼーのレポートに見る企業応用を促進する大規模言語モデルの評価方法

          プロダクトチームの技術リテラシーを高め、生成系 AI のインパクトを最大化するためのワークショップ

          生成系 AI を筆頭に技術革新著しい昨今ですが、日本においてそのインパクトは限定的になるだろうと言ったら驚くでしょうか。本記事で IPA や経済産業省のレポートからその予測根拠を示すとともに、インパクトを最大化する方策として AWS がアップデートしてきたワークショップをご紹介します。AWS がサービスだけではなく活用をガイドするプログラムも提供していることを知っていただけたらうれしいです。 ※トップ画像は IBA Boxing の AIBA World Boxing Ch

          プロダクトチームの技術リテラシーを高め、生成系 AI のインパクトを最大化するためのワークショップ

          プロダクトのピボットを決断するためにデータサイエンティストは何ができるか

          プロダクトや事業を「ピボット」すべきか決める時、データサイエンティストができることはあるでしょうか。前回、 IPA から発表されたレポートをもとに日本のスタートアップ企業が米国に比べて約 30 分の 1 という低成長に陥っている原因としてピボット回数が約 10 倍少なく、それにより創業 3 年目までに Product Market Fit が達成できていないのではと推察しました。 私は機械学習界隈の人なので、低い成長率の原因と推察される「ピボット」を促すためデータサイエンテ

          プロダクトのピボットを決断するためにデータサイエンティストは何ができるか

          日本のスタートアップ企業の成長速度が米国に比べ30分の1以下という現状にデータサイエンティストは何ができるか

          2023 年 9 月 14 日に IPA ( 情報処理推進機構 ) から衝撃的なレポートが発表されました。「成長しない日本のソフトウェアスタートアップ 国内競争を促進してエコシステムを創出する」と題されたこのレポートでは、日本のスタートアップ企業の成長スピードが米国に比べ著しく遅いことを指摘しており、遅い理由として 1) プロダクトマネジメントの手法が浸透していないこと 2) ピボットの回数が少ないこと 3) 成長意欲を刺激する競争環境の不足 を挙げています。 私は機械学習

          日本のスタートアップ企業の成長速度が米国に比べ30分の1以下という現状にデータサイエンティストは何ができるか

          シードラウンドで約 8 億円を調達したノーコードのデータ連携ツール Cascade はなぜ歩みを止めたのか

          Cascade はデータアナリスト向けのデータ連携ツールで、スプレッドシートに様々なシステムのデータを張り付けて複雑な数式で統合するより GUI で簡単かつ再利用性の高いコンポーネントの構築を可能にします。 2019 年に創業で 2021 年にシードラウンドで 530 万ドル ( 2023/9/10 現在の換算レートで約 8 億円 ) を調達しつつも、 2023 に製品開発をストップしました。創業者によるその経緯と学びをホームページ上で見ることができます。 本記事は「成功す

          シードラウンドで約 8 億円を調達したノーコードのデータ連携ツール Cascade はなぜ歩みを止めたのか