見出し画像

システム統合に必要不可欠なデータクレンジング

今日のテーマは、「データクレンジング」です。
データクレンジングとは、ビジネスの意思決定に活用するデータ(情報)の信頼性を確保するための方法です。

データの種類や形式、利用目的などにより様々ですが、いずれも企業データの一貫性・信頼性・価値の向上などを目的として実施されるものです。

以前、私のブログでも取り上げましたので、こちらもご参考に↓

データクレンジングを行わないまま、あるいはデータクレンジングのプロセスを整備しないまま収集したデータは、そのままでは使い物になりません。

データ統合の難しさはこういうところにあります。
データの品質については、課題がない企業が少なく、多くの企業が直面する問題だと思います。

データを正しく使える状態にするためには、コストが掛かり、それなりの準備に必要になります。

DXを進めるうえでも必要不可欠になるのが、このデータクレンジングです。

データクレンジングのメリットは、いろいろあります。
業務効率が良くなったり、コスト削減に寄与したり、顧客ニーズの把握だったりと、データを上手に活用することで、様々な恩恵を受けることができます。

まずは、データクレンジングが大切だという認識のもと、社内にある様々なデータに目を向けて、データの欠損や重複、ノイズ、表記の揺れ、粒度の違いなどを特定し、分析や業務に適したデータに加工する工程を模索してみることをおすすめします。


いいなと思ったら応援しよう!

荒川 明夫 (AKI) ┃ DX推進アドバイザー │ note毎日更新
よろしければ、サポートお願いします! もっと分かりやすく、ビジネスの話題を提供できるよう、勉強資金に使わせていただきます。