見出し画像

数学小話#2〜抜き打ちテストのパラドックス〜

先日あげた「抜き打ちテストのパラドックス」についての解答解説になります。まだ見てない方は是非ご覧になってからこのnoteを読むことをオススメします。


1つ生徒Xは間違いをしています。
それは月曜日から木曜日まで抜き打ちテストが無いこととして推論していることです。
一見、問題なさそうに思いますよね?
これがダメな理由をもっと簡単な例を考えます。


今2つの箱A、Bの中に球Cが1つ入っています。この時どちらに球Cが入っているか当ててみてください。もちろん運頼みは無しです。そうなると無理なように感じますよね。でも生徒Xの推論では可能だと言っているのです。
「球Cは箱Aの中にあるね。だって箱Bの中に無かったとしたら箱Aの中にあるからね。」
この言葉が問題ありなのは分かりますよね。
それは箱Bの中にないことを確認した上でしか言えないのです。


抜き打ちテストのパラドックスに戻りましょう。生徒Xの推論の肝「月曜日から木曜日までに抜き打ちテストが行われなかった事」を前提に推論している所に間違いがあるのでした。

また、このパラドックスは直ちにパラドックス(矛盾のあること)とはなりません。

生徒Xはずる賢く、先生Aの発言を信じていないので
「抜き打ちテストが行われない!」と結論づけていますが、それに反して実際に抜き打ちテストが行われています。
このことは、生徒達の結論である「抜き打ちテストは実施しない」という考えにより、「推測可能な日に抜き打ちテストを行う」ことを推測出来ませんでした。
その「推測可能な日に抜き打ちテストを行う」というもの自体が推測可能でないテスト、つまり抜き打ちテストとして成り立ってしまうのです。
これだと矛盾を生じていませんよね?
ですが、先生Aの言葉を信じてしまうと矛盾が生じてしまいます。 
「来週の月曜日から金曜日の間に抜き打ちテストを行う」ことと、「推測可能な日に抜き打ちテストを行う」ことは両立し得ない、つまりパラドックスということになります。

このような意味ではこれは「信じる」ことについて議論される様相論理的なパラドックスと言えます。
様相論理とは必然性や可能性などを扱う論理であり、なかなか深い歴史があるみたいですね。様相論理については恐らく、数論(自分が得意でない分野の一つ)になると思うので、よければ調べてみてください。知らないことはやはり調べてみると面白いし、新しい発見があると思いますよ。

いかがでしたでしょうか?なかなか現実味のある面白いパラドックスですね。類似したものに、「絞首刑のパラドックス(設定はほぼ同じ)」なものがあります。

他にもこのような数学小話も思いつき次第書いていきますね。


この記事が気に入ったらサポートをしてみませんか?