見出し画像

行列式 |A|=ad-bc の幾何学的意味

大学で「線形代数」を受講すると,いきなり行列式というのが登場する.2次正方行列 A の行列式は det(A) = ad-bc だと教わる.あるいは行列式を |A| と書くこともある.書き方はともかく,A の逆行列を求めるときに ad-bc が再登場するので,とりあえず覚える.でも,行列式って何だ?

画像1

今回は,行列式の幾何学的意味を簡単にまとめておこう.以前書いた記事「フーリエ級数展開は関数の座標を決めている」でも強調したように,数学の勉強をするとき,イメージを持って理解することはとても重要だ.

結論を述べると,2次正方行列の行列式は平行四辺形の面積である.

下図を見て欲しい.行列 A の1列目が橙色ベクトル,2列目が緑色ベクトルで,それらを2辺とする平行四辺形の面積が行列式 |A| だ.これは簡単に示すことができる.平行四辺形を含む長方形の面積から,平行四辺形の外側の面積を引けばいい.確かに,|A|= ad-bc が平行四辺形の面積だとわかる.

画像2

ちなみに,このスライドは明日の工学部新入生向けの講義「自然現象と数学」で使うので,スライド番号が書いてある.33枚目だ.

さて,これだけで「なるほど!」「おぉ〜凄い!」と感じてもらえたら嬉しいのだが,「で?」「だからどうした?」と思う人もいるだろう.「面積だとして,だから何なのか」と.

もう一歩,踏み込もう.

下図(34枚目のスライド)を見て欲しい.行列 A の1列目が橙色ベクトル,2列目が緑色ベクトルだったが,これらはそれぞれ,x 軸方向と y 軸方向の単位ベクトルを行列 A で線形変換してできるベクトルだ.つまり,各辺の長さが 1 の正方形(紫色)を平行四辺形(水色)に変形するのが,行列 A による線形変換ということになる.

このとき,元の正方形の面積は 1,変換後の平行四辺形の面積は |A| だ.つまり,行列式 |A| は,線形変換 A によって,正方形の面積が何倍になるかを意味している.

画像3

行列式が 0 になる,つまり |A| = 0 となるのは,どのようなときだろうか.そう,面積が 0 になるときだ.それは,橙色ベクトルと緑色ベクトルが一直線上になるときでもある.このとき,正方形は平行四辺形ではなく線分に変換され,面積は確かに 0 となる.

イメージを持つには,この2次元の説明で十分だと思うが,3次元でも同様のことが成り立つ.つまり,3次正方行列 B の3つの列ベクトルでつくられる平行6面体の体積が行列式 |B| に等しい.さらに,イメージは湧かないかもしれないが,4次元以上でも同様のことが成り立つ.

小さい行列が与えられたときに,手計算で行列式を計算できるのは,もちろん悪いことではない.計算できないよりも計算できた方がいい.ただ,ここで紹介したようなイメージを持たずに,サラスの公式だけ暗記して行列式が計算できたとしても,それこそ「で?」「だからどうした?」という感じになってしまう.繰り返すが,数学を勉強するときには,イメージを持とう.

© 2020 Manabu KANO.

この記事が気に入ったらサポートをしてみませんか?