Cascade.detectMultiScaleのパラメータから見える私の傾向とは?python初心者(Ep20)
こんにちわー。
前回の投稿から、少し間が開いてしまいました。。失礼しました!
さて、本日は前回までに行った内容に対して
について、実施していきたいと思います。
前回までの内容を確認する場合はこちらをクリックくださーい。
それでは、色々な視点からデータを深く観察してみたいと思います。
パターン1:顔以外にも検出している件
一つ目としては、下記の絵についてですね。
花の部分まで検出してしまっていますねー。ここで、一つ下記のコードの部分の理解が必要になる様に思います。
cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=3, minSize=(30, 30))
そうです。cascadeの設定パラメータについてです。
Cascade.detectMultiScale方法のパラメータの意味
色々なサイトに説明が書いていますが、私も理解をする為にも記載をさせて頂きます。
scaleFactor :画像スケールにおける縮小量のこと。画像の大きさを色々と変化させながら画像中の顔を検出するそうです。細かくすると見落としは少ない可能性がありますが、処理時間がかかるそうです。
minNeighbors :様々なスケールで検出した結果、同じエリアで重複して検出される数のこと。スケールを変えても何度も顔!と判断が付けば、そこは顔だろう。と言った感じです。
minSize :検出顔の取りえる最小サイズのこと。画素がどれくらい小さいものを良しとするか。と言った感じです。
処理案1:scaleFactor を触ってみる
今の設定は、
に設定をしています。それでは色々な数種類の値に変化させてみます。代表的な4パターンを載せます。
パラメータを触った傾向のグラフがこちらです。
この結果から、下記の事が分かる様に思います。
考察1:scaleFactorの効果
scaleFactor の設定値は小さいと顔の検出回数が多い
スケールの度合いによっては認識して欲しい顔が見えない場合がある
このタイミングで、scleFactor の値はこれだ!!! は決めることは難しい様に思いました。その為、他のパラメータの値の効果も合わせて判断したいと思います。
処理案2:minNeighbors を触ってみる
今の設定は、
となっています。ということは、スケールを変更し3回程同じ領域で検出できたかどうか。になりますね。それでは変更をしてみましょう。
なお、他の変数の変化があると観点がごちゃごちゃになるので、
今回触る部分以外は、初期設定のままとします。
パラメータを触った結果がこちらになります。
考察2:minNeighborsの効果
minNeighborsの設定値は小さいと顔の検出回数が多い
色々な尺度(スケール)で見られた際に、検出回数が多いとより顔メインの人物を抽出出来ている傾向がある
ここで、一つの仮説としては、
と考えることも出来るように思いました。これは、のちのちの仮説として残しておきたいと思います。
処理案3:minSize を触ってみる
今の設定は、
となっています。この画像は、1920 x 1038 のピクセル画像に対して
30 x 30 の大きさよりも小さいサイズは顔として検出しない という意味になります。 それでは、minNeighbors と同様に、このパラメータのみ変更を致します。
ここでその前に、認識を合わせてたいと思います。10x10ピクセルってどんなレベルかイメージありますか?実は、
このレベルなのです・・。これをみて私が思う事は、
と思いました。その為、ピクセル画素数は増やす方向で検討をします。
パラメータを触った結果はこちらになります。
考察3:minSizeの効果
minSizeの設定値は大きいと顔の検出回数は減少
一枚の画像の中での顔の割合が大きい場合は、サイズにおける検出が変化し、ある一定サイズのところで検出率が高くなる
ここで、一つの仮説としては、
と考えることも出来るように思いました。これは、のちのちの仮説として残しておきたいと思います。
本日は、1枚の画像を用いて、Cascadeの顔検出について深く学びました。
次回は、
ことを実施したいと思います。宜しくお願い致します。
よろしければサポート頂けると幸いです!子供へのパパ時間提供の御礼(お菓子)に活用させて頂きます☆