レビュー論文:中枢神経系に対する呼吸の影響(The Influence of Breathing on the Central Nervous System)

出典:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070065/
Copyright © 2018, Bordoni et al.

Author
Bruno Bordoni, Shahin Purgol, Annalisa Bizzarri, Maddalena Modica, and Bruno Morabito

Monitoring Editor: Alexander Muacevic and John R Adler

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

これは、Creative Commons Attribution Licenseの条件に基づいて配布されるオープンアクセス記事であり、元の著者と情報源がクレジットされている限り、あらゆる媒体での無制限の使用、配布、複製が許可されます。


Abstract

The functions of the diaphragm do not stop locally in its anatomy but affect the whole body system. The respiratory rhythm, directly and indirectly, affects the central nervous system (CNS). This article describes and reviews these influences, containing, for the first time, information on this subject in a single text. The ability of breath to move the brain mass and determine patterns of neural oscillation will be discussed. The role of the diaphragm in influencing motor expression and its effect on intracranial blood shifts in respiratory activity will also be discussed. It is known that the diaphragm can have multiple uses in improving the symptomatological picture of chronic diseases, but there is no current, concrete data on the effects that the rehabilitative training or manual approaches could have on the patient; in particular, on his/her cognitive and cerebral aspects in general.

横隔膜の機能は解剖学的に局所的ではなく、全身のシステムに影響を及ぼす。呼吸のリズムは、直接的および間接的に中枢神経系 (CNS) に影響を及ぼす。この論文では、これらの影響を詳述しレビューし、初めて、この主題に関する情報を単一の文書に含めました。呼吸が脳塊を動かし、神経振動のパターンを決定する能力について議論します。運動表現に影響する横隔膜の役割と呼吸活動における頭蓋内血液の偏移に対するその影響についても考察した。横隔膜は慢性疾患の総体症状像を改善するのに複数の用途があることが知られているが、リハビリテーション訓練または徒手的アプローチが患者に及ぼす効果に関する現在の具体的なデータはない;特に、その人の認知的および脳的側面全般について。

Keywords: diaphragm, breathing, phrenic nerve, vagus nerve, neural oscillation

Introduction and background

The diaphragm is the motor muscle of breath, which can be automatic, forced, or controlled. The diaphragm is assigned to multiple functions, both indirectly and directly, which go beyond breathing. It also promotes expectoration, vomiting, defecation, urination, swallowing, and phonation. The diaphragm influences the body metabolic balance [1-2] and stimulates the venous and lymphatic return, thereby creating the correct relationship between the stomach and the esophagus to prevent gastroesophageal reflux [3]. It is essential for correct posture and locomotion, as well as for the movement of the upper limbs [3-5]. The diaphragmatic muscle influences the emotional and psychological spheres. Inspiratory apnea is able to raise the somatic pain threshold, decreasing the painful perception [6-8].

横隔膜は呼吸の運動筋であり、自動、強制、または制御が可能である。横隔膜は、間接的にも直接的にも、呼吸以外にも、複数の機能を担っています。また、それは喀痰、嘔吐、排便、排尿、嚥下、および発声を促進する。横隔膜は身体の代謝バランスに影響を与え [1-2]、静脈およびリンパの還流を刺激し、それによって胃と食道の間の正しい関係を作り出し、胃食道逆流を防ぐ [3]。それは正しい姿勢と運動、上肢の運動に不可欠である [3-5]。横隔膜筋は感情と心理の領域に影響を与える。吸気性無呼吸は体性疼痛閾値を上昇させ、疼痛知覚を低下させることができる [6-8]。

The functions of the diaphragm do not stop locally in its anatomy but affect the whole body system. It can be called systemic breath [9]. The main nerves for the peripheral innervation of the diaphragm are the phrenic and vagus (the latter for the crural area). The phrenic nerve receives impulses from the groups of medullary neurons of the preBötzinger complex and from the neurons of the retrotrapezoid parafacial complex, which, in turn, receive higher orders from the retroambiguus nucleus of the bulb, even if the mechanisms underlying these links are not completely clarified [9]. The phrenic nerve (C3-C5) is a mixed nerve, capable of sending efferences and receiving sensitive afferences. It sends motor information to the diaphragm and senses information from the vena cava, the pericardium, the pleurae, the Glisson capsule, and the subdiaphragmatic peritoneal area [9]. The right phrenic nerve is more vertical, with less length, and possesses faster electrical conduction. In its path, the phrenic nerve performs many anastomoses and in different percentages, depending on the variability of the presence of the accessory phrenic nerves: vagus nerve, nerve subclavius, ansa cervicalis, stellate ganglion, cranial nerves XII and XI, supraclavicular nerve, and sternohyoid nerve [9]. In the subdiaphragmatic portion, the phrenic nerve continues its course. On the right, it forms one or more phrenic ganglia, which are connected to the celiac ganglion and the suprarenal gland, and, in some people, also with the sympathetic superior mesenteric ganglion; on the left, it forms a phrenic ganglion, which could connect to the sympathetic ganglia and to the adrenal gland, according to anatomical subjectivity [10]. In these phrenic ganglia, we find neuronal bodies that are sympathetic, and there is evidence that a retrograde system of information from the sympathetic ganglia trips back to the phrenic nerve, influencing diaphragmatic behavior [10].

横隔膜の機能は解剖学的に局所的ではなく、全体システムに影響を及ぼす。これは全身呼吸(systemic breath)と呼ぶことができる [9]。横隔膜の末梢神経支配の主要な神経は横隔膜と迷走神経(後者は下腿部)である。横隔神経は前ボッツィンガー複合体(Bötzinger complex)の髄質ニューロン群と後台形顔面傍複合体のニューロン群からインパルスを受け、次にこれらのニューロン群は球状部の疑核後核(Retro-ambiguus nucleus)から高次のインパルスを受けるが、これらの連結の基礎となるメカニズムは完全には解明されていません [9]。横隔膜神経(C3~C5)は、遠心性を送ることができ、感受性求心性を受け取ることができる混合神経である。運動情報を横隔膜に送り、大静脈、心膜、胸膜、グリソン鞘、横隔膜下腹領域からの情報を感知する [9]。右横隔神経は垂直性がより高く、長さがより短く、電気伝導がより速い。横隔膜神経はその経路において、多くの吻合を行い、その割合は副横隔神経の存在の多様性に応じて異なる:迷走神経、鎖骨下神経、頸神経幹、星状神経節、第XIIおよび第XI脳神経、鎖骨上神経、胸骨舌骨神経 [9]。横隔膜下部分では、横隔神経がそれの経路を続ける。右側では1個または複数の横隔神経節を形成し、腹腔神経節および副腎に連結し、一部の患者では交感神経の上腸間膜神経節とも連結する;左側では横隔神経節を形成し、解剖学的主観によると交感神経節や副腎につながっている可能性がある [10]。これらの横隔神経節には交感神経の神経体があり、交感神経節からの逆行性の情報系が横隔神経に戻り、横隔膜の行動に影響を与えるという証拠がある [10]。

The vagus nerve (X cranial nerve) is the longest of the cranial nerves. The vagus nerve is mixed, with motor skills (20% of efferent fibers) and sensitive (80% of afferent fibers) [11]. The vagus originates from the ambiguus nucleus, from the solitary nucleus and from the dorsal motor nucleus of the encephalic trunk, immediately caudal to the glossopharyngeal one; the dorsal nucleus (or cardiopneumoenteric nucleus) that is found in the bulb under the fourth ventricle floor gives rise to the parasympathetic preganglia fibers of the vagus coming out of the encephalic trunk [12]. These fibers reach the parasympathetic ganglia of the different viscera present in the mediastinum and in the abdomen. The nerve exiting its nuclei moves horizontally forward and oblique, to reach the jugular foramen; at this level, it crosses the bony canal, forming two ganglia [13]. The first ganglion in the jugular foramen of the vagus is the nodose or superior with sensory tasks, while the second, called jugular or inferior, has somatic relevance for the sensitivity of the auricle skin [14]. The vagus performs different anastomoses, including the sympathetic system at the cervical and abdominal levels and the phrenic nerve, the vagus nerve itself (loop or anastomosis of Galenum), the nerve XI (Lobstein anastomosis), nerve IX, and the ansa cervicalis [15-17]. In the respiration mechanism, a third nerve takes over, the hypoglossal (XII), particularly in the preinspiratory phase. This nerve is essential for the compliance of the respiratory airways, activating before the air enters the lungs: during the inhalation when the tongue is retruded [18-19]. The respiratory rhythm, directly and indirectly, affects the central nervous system (CNS).

迷走神経(X脳神経)は、脳神経の中で最も長い神経です。迷走神経は、運動神経(遠心性線維の20%)と感覚神経(求心性線維の80%)が混在する [11]。迷走神経は、舌咽神経のすぐ尾側にある脳幹の疑核、孤立核、背側運動核から起始する;第4脳室床の下の球部に見られる背側核(または心肺腸核)は、脳幹から出てくる迷走神経の副交感神経節前線維を生じる [12]。これらの線維は縦隔および腹部に存在する様々な内臓の副交感神経節に達する。神経核から出る神経は水平方向に前方および斜めに移動し、頸静脈孔に達する;このレベルでそれは骨管を横切り、2つの神経節を形成する [13]。迷走神経の頸静脈孔にある第1神経節は感覚的な役割を伴う結節性または上部神経節であり、第2神経節は頸静脈性または下部神経節と呼ばれ、耳介皮膚の感受性と体細胞性の関連を持つ [14]。迷走神経は、頸部および腹部レベルでの交感神経系および横隔神経、迷走神経自体 (Galenumのループまたは吻合)、第XI神経 (ロブスタイン吻合)、第IX神経、および頸神経幹[15-17]を含む様々な吻合を行う。呼吸機構では、第3の神経、特に呼吸前相で舌下神経(XII)が支配する。この神経は呼吸気道のコンプライアンスに必須であり、空気が肺に入る前に活性化する;舌が後退する吸気中 [18-19]。呼吸リズムは、直接的および間接的に中枢神経系(CNS)に影響を及ぼす。

This article describes and reviews these influences, containing, for the first time in the authors’ knowledge, information on this subject in a single text. The clinical intent is to remember that the diaphragm can have multiple utilities to improve the symptomatic picture of chronic diseases. In chronic diseases, a decline in cognitive activity takes place concomitantly with an alteration of the respiratory function observed in Chronic Obstructive Pulmonary Disease (COPD), obstructive sleep apnea (OSA), fibromyalgia, chronic heart failure (CHF), and chronic low back pain (CLPB) [20-27]. The ability of the breath to move the brain mass and determine patterns of neural oscillation will be discussed.

本稿では、著者の知る限りでは初めて、この主題に関する情報を単一のテキストに含めて、これらの影響を詳述し、レビューする。横隔膜は慢性疾患の症状像を改善するために複数の有用性を有することを覚えておくことが臨床的な意図である。慢性疾患では、認知活動の低下は、慢性閉塞性肺疾患(COPD)、閉塞性睡眠時無呼吸(OSA)、線維筋痛症、慢性心不全(CHF)、および慢性腰痛(CLPB) で観察される呼吸機能の変化と同時に起こる[20-27] 。呼吸が脳塊を動かし、神経振動のパターンを決定する能力について議論する。

Review

呼吸と脳塊の動き(Breath and movement of the brain mass)

Research has shown that there are forces capable of craniocaudally moving the brain mass and affecting the synthesis of cephalic-rachid fluid (CRF) [28]. Using magnetic resonance imaging (MRI), it has been shown that during systole, brain mass and the medulla oblongata move caudally and medially (23 millimeters), while in concomitance with the diastole, there is a cranial return [29]. The intervention of the respiratory diaphragm muscle is able to move the brain mass and influence the movement of the CRF, as well as increasing its production, in particular with forced breaths. During the inhalation, there is a cranial return of the central nervous system while with the exhalation, there is a movement in the caudal direction [30]. The difference between the heart and the diaphragm is that the myocardium moves the CRF faster while the diaphragm moves a larger quantity of fluid [31]. During inhalation, thoracic pressure is reduced, which affects the subarachnoid space through the venous plexus that surrounds the thoracic spine and inside the spinal canal; the decreased thoracic pressure influences the hydrostatic pressure that helps in low venous resistance and paravenous and CRF drainage [32]. The CRF protects the functions of the central nervous system (CNS), bringing nutrients, collecting metabolic cellular wastes, and regulating cerebral pressure. It is renewed three to five times a day, consisting essentially of molecules derived from blood for about 80% and the remaining from molecules produced by the brain and intrathecally [33].

研究は、脳塊を頭尾方向に移動させ、頭頸部液(CRF)の合成に影響を与えることができる力があることを示している [28]。磁気共鳴映像法(MRI)を用いて、収縮期に脳塊と延髄が尾側および内側(23ミリメートル)に移動する一方で、拡張期と同時に頭蓋還流があることが示されている [29]。呼吸横隔膜筋の介入は脳塊を動かし、CRFの動きに影響し、特に強制呼吸でCRFの生成を増加させる。吸入時には中枢神経系の頭蓋還流があり、呼気時には尾方向への運動がある [30]。心臓と横隔膜の違いは、心筋がCRFを速く動かすのに対し、横隔膜は大量の液体を動かすことである [31]。吸入中には、胸圧が低下し、胸椎を取り囲む静脈叢と脊柱管の内側を介してくも膜下腔に影響を及ぼす;胸圧の低下は静水圧に影響を与え、静脈抵抗の低下、静脈傍およびCRFの排水に役立つ [32]。CRFは中枢神経系(CNS)の機能を保護し、栄養を運び、代謝性細胞老廃物を集め、脳圧を調節する。それは1日3回から5回更新され、基本的に約80%は血液由来の分子からなり、残りは脳および髄腔内で産生される分子から構成される [33]。

There is some evidence suggesting a reduction in the amount of CRF in motion, if there is a resistance in the respiratory tract or apnea, with a decrease in the subarachnoid space [32,34]. Currently, it is not known what happens with physiotherapic, osteopathic, or manual treatments of the dysfunctional inspiratory muscle and the effect they have on CRF and improving brain function. One formulated hypothesis is that there is a relationship between a decline in chronic diaphragmatic function and cognitive function, disturbing the function and mobility of CRF. Not only does the reduction of oxygen caused by the diaphragmatic dysfunction affect the patient's cognitive function, but it is also probably due to a slowing down of the fluid. Another relationship between the diaphragm and the fluid is cough. Coughing helps expectoration and facilitates boosting fluid towards the cranial vector, stimulating the exchange of systemic immune information [35].

呼吸器官に抵抗または無呼吸がある場合、くも膜下腔の減少とともにCRFの運動量が減少することを示唆する証拠がいくつかある [32、34]。現時点では、機能不全の吸気筋に対する理学療法、整骨療法、または手動療法で何が起こるか、およびそれらがCRFおよび脳機能の改善に及ぼす効果は不明である。1個の定式化された仮説は、慢性的な横隔膜機能の低下と認知機能の間に関係があり、CRFの機能と可動性を阻害するというものである。横隔膜機能障害によって引き起こされる酸素の減少は、患者の認知機能に影響を及ぼすだけでなく、おそらく体液の速度低下にも起因する。横隔膜と胸水の別の関係は咳です。咳は喀痰を助け、頭蓋ベクターへの体液の増加を促進し、全身の免疫情報の交換を刺激する [35]。

Further studies are needed to verify if a diaphragm-targeted training could improve the metabolism and immune response of the central nervous system. Another motivation of the response of movement of the cerebral mass and of the spinal cord during the act of breathing could be related to the creation of mechanical tension on the nervous structures, central (cranial) nerves, and peripheral nerves. The peripheral and central nervous structure is subjected to a daily mechanical stress load, as when an articulation moves, it undergoes compression and stretching. The physiological stress load allows the nerve to regenerate itself, through autocrine and paracrine substances, which are generated by the same nervous structure [36]. The breath moving the central and peripheral nervous structure would induce mechanical stress on the same structures, which stress would lead to the mechanotransduction phenomenon, maintaining the function and shape of the nervous tissue constantly. The movement generated would allow the form and function to persist; minor or altered movement would mean minor and impaired function and form. It is known that this happens with the heartbeat. For example, the head of the optic nerve moves synchronously with the cardiac cycle, with a pulsatile forward displacement during systole and an inward movement with diastole, for a maximum of 8.7 μm and a minimum of 2.9 μm [37]. The lamina cribrosa, the continuation of the contour of the sclera, moves in the opposite direction in systole, creating a stretching in the optic nerve. The constant stretching during each heartbeat creates conditions for the synthesis of some substances, such as endothelin-1 and nitric oxide synthase (NOS), to improve vascular supply to the optic nerve [38]. There are no studies on the relationship between diaphragmatic breathing and the movement of the cranial and peripheral nerves. However, we can hypothesize a stretching function similar to the heartbeat because we know that both the heart cycle and the respiratory rhythm move the brain mass and the medulla. There are no studies to check whether a specific work on rehabilitative breathing can increase the function of the central and peripheral nervous systems.

横隔膜を標的としたトレーニングが中枢神経系の代謝と免疫応答を改善するかどうかを検証するためには、さらなる研究が必要である。呼吸中の脳塊と脊髄の動きの反応の別の動機は、神経構造、中枢(脳)神経、末梢神経に機械的緊張が生じることに関係している可能性がある。末梢および中枢神経構造は、関節が動くときに圧縮および伸張を受けるように、日常的な機械的ストレス負荷を受ける。生理的ストレス負荷は、同じ神経構造によって生成されるオートクリンおよびパラクリン物質を介して、神経が自己再生することを可能にする [36]。中枢および末梢神経構造を動かす呼吸は同じ構造に機械的ストレスを誘導し、このストレスは機械的変換現象を導き、神経組織の機能と形状を常に維持する。生成された運動は、形態と機能が持続することを可能にするだろう;軽微な動きや変化した動きは、機能や形状が軽微で障害されていることを意味します。これは心臓の鼓動で起こることが知られている。例えば、視神経の頭部は心周期と同期して動き、収縮期には脈動しながら前方に移動し、拡張期には内側に移動し、最大で8.7μm、最小で2.9μm移動する [37]。強膜の輪郭の延長である篩状板は収縮期に反対方向に動き、視神経を引き伸ばす。各心拍間の一定の伸張は、視神経への血管供給を改善するために、エンドセリン-1および一酸化窒素生成酵素(NOS)のようないくつかの物質の合成のための条件を作り出す [38] 。横隔膜呼吸と脳神経および末梢神経の運動との関係に関する研究はない。しかし、心臓の周期と呼吸リズムの両方が脳の質量と髄質を動かすことがわかっているので、心臓の鼓動に似た伸張機能を仮定することができる。リハビリテーション呼吸に関する特定の作業が中枢および末梢神経系の機能を増加させるかどうかを確認した研究はない。

神経ネットワークの呼吸と振動(Breathing and oscillation of the neural network)

The breath modulates the limbic oscillations, the cognitive and motor functions of the cortex. This process occurs with greater force when inhalation takes place through the nose; on the other hand, the effect is less forceful if the breath is carried out with an open mouth [39]. The olfactory bulb and the piriformis cortex oscillate during the breath, probably coordinating the cortical neural network linked to learning, memory, and behavior [39]. The olfactory system is connected to the limbic system and to the hippocampus (through projections of the entorhinal cortex): the type of respiratory rhythm creates specific neural excitations (depth of breath, number of breaths, speed of breath), which create specular oscillatory rhythms that propagate in different brain areas, not necessarily related to smell. These oscillations are delta (low frequency), theta (4-12 Hz), beta (they are found with odors, 30 Hz), and gamma (40-150 Hz) [39-41].

呼吸は大脳辺縁系の振動、皮質の認知および運動機能を調節する。この過程は鼻から吸入するとより強い力で発生する;一方、口を開けて呼吸を行うとその効果は弱くなる [39]。嗅球と梨状筋皮質は呼吸中に振動し、おそらく学習、記憶、行動に関連する皮質神経ネットワークを調整しているだろう [39] 。嗅覚系は(嗅内皮質の投射を介して)大脳辺縁系および海馬とつながっている:呼吸リズムの種類によって特異的な神経興奮(呼吸の深さ、呼吸回数、呼吸の速さ)が生じ、それによって脳の様々な領域を伝播する鏡面振動リズムが生じるが、必ずしも嗅覚とは関連していない。これらの振動は、デルタ(低周波数)、シータ(4~12 Hz)、ベータ(30 Hz、それらは匂いとともに発見される。)、およびガンマ(40~150 Hz)である [39-41]。

The same respiratory rhythm is recorded differently from specific brain areas, from which the neural oscillations, which allow communication between them, start. The greater the oscillations are coordinated, the greater the function expressed by the different cerebral areas involved. The diaphragm is the "diapason" of the neural system. Breathing, in particular, affects the gamma waves, which involve the neocortex (frontal, parietal, and temporal area); these areas are activated for cognitive function: memory, attention, sensory perception, problem-solving, and language processes [40]. Neural oscillations are measured in local fields potentials (LFPs) or via an electroencephalogram (EEGs), influencing the action potential or spikes of neurons [42]. Oscillations organize the spikes of neurons over time (more precise and durable synaptic connections), implementing their ability to function and communicate with different brain areas. Neural oscillations do not depend on the extent of oxygenated blood in the brain [42]. Gamma waves also influence the limbic and motor areas of the cortex [40]. The same diaphragm muscle could directly influence the neural oscillations (particularly, the delta and theta waves), through the proprioceptive and interoceptive information that its movement transmits, activating the somatosensory and insular cortex, passing through the spinal pathways [40,42]. The direct stimulation of the diaphragm, particularly when the theta waves are activated, always stimulates the cognitive activity [43]. The diaphragm stimulates limbic rhythmogenesis involving a large number of cells that are depolarized synchronously, starting from the sensory medullary pathways (proprioception and interoception) [44]. With this mechanism, we can more easily memorize the gestures (thanks to the relationship with the hippocampus) and the emotional memory [44-45]. Not only from the nose does the rhythmogenesis stimulation start with the inhalation but also from the receptorial stimulations of the muscular structure of the diaphragm.

同じ呼吸リズムが脳の特定の領域では異なる記録がされ、そこから神経振動が始まり、脳と脳の間の情報伝達が可能になり、始まる。振動がより大きく調整されればされるほど、関与する様々な脳領域の機能は大きくなる。横隔膜は神経系の「音叉」である。特に呼吸は、大脳新皮質(前頭部、頭頂部、側頭部)が関与するガンマ波に影響します;これらの領域は、記憶、注意、感覚知覚、問題解決、言語処理などの認知機能が活性化される [40]。神経振動は局所電位(LFP)または脳波(EEG)で測定され、ニューロンの活動電位またはスパイクに影響を与える [42]。振動は、時間の経過とともにニューロンのスパイクを組織化し(より正確で持続性のあるシナプス結合)、様々な脳領域と機能し通信する能力を実現する。神経振動は脳内の酸素化された血液の量に依存しない [42]。ガンマ波は皮質の辺縁系と運動野にも影響を与える [40]。同じ横隔膜筋は、その運動が伝達する固有受容および内受容情報を介して神経振動(特にデルタ波とシータ波)に直接影響することができ、体性感覚および島皮質を活性化し、脊髄経路を通過する [40、42]。横隔膜への直接的な刺激は、特にシータ波が活性化されている場合、常に認知活動を刺激する [43]。横隔膜は、感覚髄質経路(固有受容感覚と内受容感覚)から出発して、同時に脱分極する多数の細胞が関与する辺縁系のリズム形成を刺激する [44]。このメカニズムにより、私たちは(海馬との関係のおかげで)ジェスチャーと感情記憶をより簡単に記憶することができる [44-45]。鼻からだけでなく、横隔膜の筋肉構造の受容刺激からもリズム形成刺激が始まる。

Another structure that contributes to the creation of neural excitatory patterns connected to the breath is the pre-Bötzinger cellular complex. The latter is the ventral portion of the medulla oblongata, an important region for the respiratory rhythm, particularly for the inspiratory phase [46]. Approximately 10%-20% of the neural cells composing this complex send autonomous action potentials (10-20 mV, 0.3-0.8 s). This sending of electrical excitation takes the name of neural pacemakers [46-47]. The retrotrapezoid nucleus and the respiratory parafacial group positioned rostrally to the pre-Bötzinger group oscillate during the active expiratory phase [48]. The mechanisms underlying these fluctuations are not fully understood. The pre-Bötzinger group is linked to the hypothalamus, the amygdala, the thalamus, the cortex, and the gray periaqueductal area [49-50]. We could hypothesize that another oscillatory and synchronized means of breathing communication can also start from these areas of the medulla oblongata influencing the cognitive and emotional aspects.

呼吸に関連した神経興奮パターンの形成に寄与する別の構造は、前ボッツィンガー細胞複合体である。後者は延髄の腹側部分で、呼吸リズム、特に吸気相にとって重要な部位である [46]。この複合体を構成する神経細胞の約10%~20%は自律的な活動電位(10~20mV、0.3~0.8秒)を送信する。この電気的興奮の伝達は神経ペースメーカーと呼ばれる [46-47]。前ボッツィンガー群の吻側に位置する後台形核と呼吸傍顔面群は、活発な呼気相の間に振動する [48]。これらの変動の根底にあるメカニズムは完全には解明されていない。前ボッツィンガー群は視床下部、扁桃体、視床、皮質、および灰白質中脳水道周囲領域に関連している [49-50]。呼吸コミュニケーションの別の振動的で同期した手段も、認知的側面および情動的側面に影響する延髄のこれらの領域から始まると仮定することができる。

運動協調と横隔膜(Motor coordination and diaphragm)

Studies on a human model have shown that the breath produces a bilateral activation of the cortex, particularly the primary motor cortex (M1), premotor cortex, and additional motor areas [50]. Cortical activations send afferents to the medullary respiratory areas (corticospinal pathways) so that the movements produced by the respiratory musculature have a sufficient quantity of oxygen. There is a bi-univocal relation between the breathing and activation of the skeletal musculature. The contraction of the diaphragm excites the respiratory areas of the M1 cortex, in which areas of activation of the musculature of the limbs are present. Probably, this proximity allows the muscles of the limbs to be activated with greater emphasis, which has the repercussions of better motor performance (coordination and strength) [42]. A deep breath is able to express a force and perform motor coordination of the musculature of the major hand (about 10% more), as compared to a non-deep or forced breath. Some chronic diseases that negatively affect the diaphragm present an impaired motor coordination, as in patients with COPD and CHF [3], as it happens in some neurological diseases, such as Parkinsons and dystonia. Further studies are needed to exhaustively determine the underlying neural processes.

人間モデルを用いた研究では、呼吸が皮質、特に一次運動野(M1)、運動前野、その他の運動野の両側性の活性化をもたらすことが示されている [50]。皮質の活性化は求心性神経を延髄の呼吸野(皮質脊髄路)に送り、呼吸筋によって生産される運動が十分な量の酸素が持つようにする。呼吸と骨格筋組織の活性化の間には2義的な関係がある。横隔膜の収縮はM1皮質の呼吸野を興奮させるが、そこには四肢の筋組織の活性化領域が存在する。おそらく、この近接は四肢の筋肉をより重大に強調して活性化することを許可し、より良い運動能力(協調性と筋力)の影響を与える [42]。深呼吸は、非深呼吸または強制呼吸と比較して、力を発現し、主要な手の筋肉組織(約10%多い)の運動協調を行うことができる。横隔膜に悪影響を及ぼす慢性疾患の中には、COPDやCHF [3]の患者のように、パーキンソン病やジストニアのような神経疾患で起こるように、運動協調障害を呈するものがある。根本的な神経過程を網羅的に決定するには、さらなる研究が必要である。

活動電位、血液量、呼吸(Action potentials, blood volume, and breath)

The diaphragm muscle has great impacts on blood, arterial, and venous circulation, influencing intracranial pressure [9]. It has been demonstrated on a human model that a variation of cerebral blood flow is able to produce action potentials, which can be recorded with EEG. These electrical responses are not exclusively attributable to the activity of glial cells or cortical neurons but to variations in intracranial pressure. An explanation could be related to the sensitivity of intracranial or endothelial epithelial layers, particularly in the areas of the blood barrier encephalic (BBE). These epithelium layers have transmural electrical potentials, which could be stimulated by pressure changes, creating adjustable electrical responses, probably passive ion-transfer mechanisms, such as sodium and potassium, between cell membranes. Blood pressure changes may directly stimulate an electrical response of brain neurons, with small variations in microvolts (0.5 Hz). During cognitive tasks, it is possible that breathing may affect intracranial pressures and create low-voltage electrical responses.

横隔膜筋は血液、動脈、静脈の循環に大きな影響を与え、頭蓋内圧に影響を与える [9]。脳血流の変動が活動電位を生成させることが人間モデルで実証されている、それはEEGで記録できる。これらの電気的反応は、グリア細胞や皮質ニューロンの活動のみに起因するのではなく、頭蓋内圧の変動に起因する。説明は、頭蓋内または内皮上皮層、特に脳血液関門(BBE)領域の感受性と関係している可能性がある。これらの上皮層は、圧力変化によって刺激される経壁電位を有し、調節可能な電気応答、おそらく細胞膜間のナトリウムやカリウムなどの受動的イオン移動メカニズムを生み出す。血圧の変化は、マイクロボルト(0.5 Hz)の小さな変動で、脳ニューロンの電気的反応を直接刺激する可能性がある。認知タスク中、呼吸は頭蓋内圧に影響し、低電圧の電気反応を生み出す可能性がある。

Conclusions

In its contractions, the diaphragm muscle has systemic functional reflexes that are not only related to changes in tissue oxygen. In this article, we reviewed some functions not yet well explored, such as the neural oscillations, the movement of the brain mass, the influences that the breath has on motor activities, and the electrical responses of the brain at low voltage (the latter through variations of blood intracranial pressures). The diaphragm still has many mysteries to be unveiled, not only on the functions it exerts in the body system but also on the usefulness that a manual approach can have on the patient. Resuming the work of Morgado-Valle (in the bibliography), we can conclude with this reflection: Breath has patterns. Schemes create behavior. Breath is a behavior. Behavior represents the person. Breath reveals the person.

横隔膜筋の収縮において、横隔膜筋は組織酸素の変化だけに関連するのではなく、全身的な機能反射を有する。本稿では、神経振動、脳塊の運動、呼吸が運動活動に及ぼす影響、低電圧での脳の電気的応答(後者は血液頭蓋内圧の変動による)など、まだ十分に研究されていないいくつかの機能について概説した。横隔膜は依然として、それが身体系で発揮する機能だけでなく、手動的アプローチが患者に与えることができる有用性についても、明らかにされるべき多くの謎を有している。Morgado-Valle(参考文献)の研究を再開すると、次のような考察で締めくくることができる:呼吸にはパターンがある。スキームは動作を作成します。呼吸は行動です。行動は人を表す。呼吸は人を明らかにする。

Notes

The content published in Cureus is the result of clinical experience and/or research by independent individuals or organizations. Cureus is not responsible for the scientific accuracy or reliability of data or conclusions published herein. All content published within Cureus is intended only for educational, research and reference purposes. Additionally, articles published within Cureus should not be deemed a suitable substitute for the advice of a qualified health care professional. Do not disregard or avoid professional medical advice due to content published within Cureus.

Cureusに掲載されている内容は、独立した個人または組織による臨床経験および/または研究の結果です。Cureusは、ここに掲載されたデータまたは結論の科学的正確性または信頼性について責任を負いません。Cureus内で公開されているすべてのコンテンツは、教育、研究、および参照のみを目的としています。さらに、Cureus内で発表された論文は、資格のある医療専門家の助言の適切な代替とみなされるべきではありません。Cureus内に掲載されている内容のために、専門的な医学的アドバイスを無視したり、避けたりしないでください。

References

1. The continuity of the body: hypothesis of treatment of the five diaphragms. Bordoni B, Zanier E. J Altern Complement Med. 2015;21:237–242. [PubMed] [Google Scholar]

2. Network of breathing. Multifunctional role of the diaphragm: a review. Bordoni B. Adv Respir Med. 2017;85:290–291. [PubMed] [Google Scholar]

3. Low-back pain and gastroesophageal reflux in patients with COPD: the disease in the breath. Bordoni B, Marelli F, Morabito B, Sacconi B, Caiazzo P, Castagna R. Int J Chron Obstruct Pulmon Dis. 2018;13:325–334. [PMC free article] [PubMed] [Google Scholar]

4. Manual evaluation of the diaphragm muscle. Bordoni B, Marelli F, Morabito B, Sacconi B. Int J Chron Obstruct Pulmon Dis. 2016;11:1949–1956. [PMC free article] [PubMed] [Google Scholar]

5. Failed back surgery syndrome: review and new hypotheses. Bordoni B, Marelli F. J Pain Res. 2016;9:17–22. [PMC free article] [PubMed] [Google Scholar]

6. A review of analgesic and emotive breathing: a multidisciplinary approach. Bordoni B, Marelli F, Bordoni G. J Multidiscip Healthc. 2016;9:97–102. [PMC free article] [PubMed] [Google Scholar]

7. Depression, anxiety and chronic pain in patients with chronic obstructive pulmonary disease: the influence of breath. Bordoni B, Marelli F, Morabito B, Sacconi B. Monaldi Arch Chest Dis. 2017;87:811. [PubMed] [Google Scholar]

8. Depression and anxiety in patients with chronic heart failure. Bordoni B, Marelli F, Morabito B, Sacconi B. Future Cardiology. 2018;14 [PubMed] [Google Scholar]

9. Anatomic connections of the diaphragm: influence of respiration on the body system. Bordoni B, Zanier E. J Multidiscip Healthc. 2013;6:281–291. [PMC free article] [PubMed] [Google Scholar]

10. The subdiaphragmatic part of the phrenic nerve - morphometry and connections to autonomic ganglia. Loukas M, Du Plessis M, Louis RG Jr, Tubbs RS, Wartmann CT, Apaydin N. Clin Anat. 2016;29:120–128. [PubMed] [Google Scholar]

11. Vagus nerve stimulation. Howland RH. Curr Behav Neurosci Rep. 2014;1:64–73. [PMC free article] [PubMed] [Google Scholar]

12. Vagus nerve and vagus nerve stimulation, a comprehensive review: part I. Yuan H, Silberstein SD. Headache. 2016;56:71–78. [PubMed] [Google Scholar]

13. Chronic heart failure: contemporary diagnosis and management. Ramani GV, Uber PA, Mehra MR. Mayo Clin Proc. 2010;85:180–195. [PMC free article] [PubMed] [Google Scholar]

14. The lower cranial nerves: IX, X, XI, XII. Sarrazin JL, Toulgoat F, Benoudiba F. Diagn Interv Imaging. 2013;94:1051–1062. [PubMed] [Google Scholar]

15. Morphology of the human cervical vagus nerve: implications for vagus nerve stimulation treatment. Verlinden TJ, Rijkers K, Hoogland G, Herrler A. Acta Neurol Scand. 2016;133:173–182. [PubMed] [Google Scholar]

16. Sympathetic nerve fibers in human cervical and thoracic vagus nerves. Seki A, Green HR, Lee TD, et al. Heart Rhythm. 2014;11:1411–1417. [PMC free article] [PubMed] [Google Scholar]

17. Coexisting right nonrecurrent and right recurrent inferior laryngeal nerves: a rare and controversial entity: report of a case and review of the literature. Obaid T, Kulkarni N, Pezzi TA, Turkeltaub AE, Pezzi CM. Surg Today. 2014;44:2392–2396. [PubMed] [Google Scholar]

18. Phrenic vagal and hypoglossal activities in rat: pre-inspiratory, inspiratory, expiratory components. Leiter JC, St-John WM. Respir Physiol Neurobiol. 2004;142:115–126. [PubMed] [Google Scholar]

19. The tongue after whiplash: case report and osteopathic treatment. Bordoni B, Marelli F, Morabito B. Int Med Case Rep J. 2016;9:179–182. [PMC free article] [PubMed] [Google Scholar]

20. Computerized screening for cognitive impairment in patients with COPD. Campman C, van Ranst D, Meijer JW, Sitskoorn M. Int J Chron Obstruct Pulmon Dis. 2017;12:3075–3083. [PMC free article] [PubMed] [Google Scholar]

21. Cognitive deficits in obstructive sleep apnea: insights from a meta-review and comparison with deficits observed in COPD, insomnia, and sleep deprivation. Olaithe M, Bucks RS, Hillman DR, Eastwood PR. Sleep Med Rev. 2017;38:39–49. [PubMed] [Google Scholar]

22. The complexities of fibromyalgia and its comorbidities. Lichtenstein A, Tiosano S, Amital H. Curr Opin Rheumatol. 2017;30:94–100. [PubMed] [Google Scholar]

23. Muscle performance in patients with fibromyalgia. Okumus M, Gokoglu F, Kocaoglu S, Ceceli E, Yorgancioglu ZR. https://www.sma.org.sg/smj/4709/4709a2.pdf. Singapore Med J. 2006;47:752–756. [PubMed] [Google Scholar]

24. Cognitive impairment in chronic obstructive pulmonary disease and chronic heart failure: a systematic review and meta-analysis of observational studies. Yohannes AM, Chen W, Moga AM, Leroi I, Connolly MJ. J Am Med Dir Assoc. 2017;18:451. [PubMed] [Google Scholar]

25. The fascial system and exercise intolerance in patients with chronic heart failure: hypothesis of osteopathic treatment. Bordoni B, Marelli F. J Multidiscip Healthc. 2015;8:489–494. [PMC free article] [PubMed] [Google Scholar]

26. The cognitive impact of chronic low back pain: positive effect of multidisciplinary pain therapy. Schiltenwolf M, Akbar M, Neubauer E, Gantz S, Flor H, Hug A, Wang H. Scand J Pain. 2017;17:273–278. [PubMed] [Google Scholar]

27. Postural function of the diaphragm in persons with and without chronic low back pain. Kolar P, Sulc J, Kyncl M, et al. J Orthop Sports Phys Ther. 2012;42:352–362. [PubMed] [Google Scholar]

28. Cranial rhythmic impulse related to the Traube-Hering-Mayer oscillation: comparing laser-Doppler flowmetry and palpation. Nelson KE, Sergueef N, Lipinski CM, Chapman Chapman, Glonek T. https://www.ncbi.nlm.nih.gov/pubmed/?term=Nelson+KE%2C+Sergueef+N%2C+Lipinski+CM%2C+Chapman+AR+Glonek+T.+Cranial+rhythmic+impulse+related+to+the+Traube-Hering-Mayer+oscillation%3A+comparing+laser-Doppler+flowmetry+and+palpation+J+Am+Osteopath+Assoc+2001+101+163-73. J Am Osteopath Assoc. 2001;101:163–173. [PubMed] [Google Scholar]

29. Sutherland's legacy in the new millennium: the osteopathic cranial model and modern osteopathy. Bordoni B, Zanier E. https://www.ncbi.nlm.nih.gov/pubmed/?term=Bordoni+B%2C+Zanier+E.+Sutherland's+legacy+in+the+new+millennium%3A+the+osteopathic+cranial+model+and+modern+osteopathy+Adv+Mind+Body+Med+2015+Spring+29+15-21. Adv Mind Body Med. 2015;29:15–21. [PubMed] [Google Scholar]

30. Brain and cerebrospinal fluid motion: real-time quantification with M-mode MR imaging. Maier SE, Hardy CJ, Jolesz FA. Radiology. 1994;193:477–483. [PubMed] [Google Scholar]

31. Characterization of cardiac- and respiratory-driven cerebrospinal fluid motion based on asynchronous phase-contrast magnetic resonance imaging in volunteers. Takizawa K, Matsumae M, Sunohara S, Yatsushiro S, Kuroda K. Fluids Barriers CNS. 2017;14:25. [PMC free article] [PubMed] [Google Scholar]

32. Increased inspiratory resistance affects the dynamic relationship between blood pressure changes and subarachnoid space width oscillations. Wszedybyl-Winklewska M, Wolf J, Swierblewska E, et al. PLoS One. 2017;12:179503. [PMC free article] [PubMed] [Google Scholar]

33. The cerebrospinal fluid and barriers - anatomic and physiologic considerations. Tumani H, Huss A, Bachhuber F. Handb Clin Neurol. 2017;146:21–32. [PubMed] [Google Scholar]

34. Modelling of subarachnoid space width changes in apnoea resulting as a function of blood flow parameters. Kalicka R, Mazur K, Wolf J, Frydrychowski AF, Narkiewicz K, Winklewski PJ. Microvasc Res. 2017;113:16–21. [PubMed] [Google Scholar]

35. Cerebrospinal fluid stasis and its clinical significance. Whedon JM, Glassey D. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842089/ Altern Ther Health Med. 2009;15:54–60. [PMC free article] [PubMed] [Google Scholar]

36. Reflections on osteopathic fascia treatment in the peripheral nervous system. Bordoni B, Bordoni G. J Pain Res. 2015;8:735–740. [PMC free article] [PubMed] [Google Scholar]

37. Pulsatile movement of the optic nerve head and the peripapillary retina in normal subjects and in glaucoma. Singh K, Dion C, Godin AG, et al. Invest Ophthalmol Vis Sci. 2012;53:7819–7824. [PubMed] [Google Scholar]

38. Noninvasive imaging of pulsatile movements of the optic nerve head in normal human subjects using phase-sensitive spectral domain optical coherence tomography. An L, Chao J, Johnstone M, Wang RK. Opt Lett. 2013;38:1512–1514. [PubMed] [Google Scholar]

39. Nasal respiration entrains human limbic oscillations and modulates cognitive function. Zelano C, Jiang H, Zhou G, Arora N, Schuele S, Rosenow J, Gottfried JA. J Neurosci. 2016;36:12448–12467. [PMC free article] [PubMed] [Google Scholar]

40. Breathing as a fundamental rhythm of brain function. Heck DH, McAfee SS, Liu Y, et al. Front Neural Circuits. 2017;10:115. [PMC free article] [PubMed] [Google Scholar]

41. Breathing above the brain stem: volitional control and attentional modulation in humans. Herrero JL, Khuvis S, Yeagle E, Cerf M, Mehta AD. J Neurophysiol. 2018;119:145–159. [PMC free article] [PubMed] [Google Scholar]

42. Rhythms of the body, rhythms of the brain: respiration, neural oscillations, and embodied cognition. Varga S, Heck DH. Conscious Cogn. 2017;56:77–90. [PubMed] [Google Scholar]

43. Organization of prefrontal network activity by respiration-related oscillations. Biskamp J, Bartos M, Sauer JF. Sci Rep. 2017;7:45508. [PMC free article] [PubMed] [Google Scholar]

44. Speed and oscillations medial septum integration of attention and navigation. Tsanov M. Front Syst Neurosci. 2017;11:67. [PMC free article] [PubMed] [Google Scholar]

45. Differential and complementary roles of medial and lateral septum in the orchestration of limbic oscillations and signal integration. Tsanov M. Eur J Neurosci. 2017;Oct:17. [PubMed] [Google Scholar]

46. Respiratory rhythm generation: the whole is greater than the sum of the parts. Morgado-Valle C, Beltran-Parrazal L. Adv Exp Med Biol. 2017;1015:147–161. [PubMed] [Google Scholar]

47. Respiratory rhythm generation: triple oscillator hypothesis. Anderson TM, Ramirez JM. F1000Res. 2017;6:139. [PMC free article] [PubMed] [Google Scholar]

48. Understanding the rhythm of breathing: so near, yet so far. Feldman JL, Del Negro CA, Gray PA. Annu Rev Physiol. 2013;75:423–452. [PMC free article] [PubMed] [Google Scholar]

49. Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear. Vianna DM, Brandão ML. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2003000500002&lng=en&nrm=iso&tlng=en#Text. Braz J Med Biol Res. 2003;36:557–566. [PubMed] [Google Scholar]

50. Chapter 20 - the periaqueductal gray controls brainstem emotional motor systems including respiration. Holstege G. Prog Brain Res. 2014;209:379–405. [PubMed] [Google Scholar]


Articles from Cureus are provided here courtesy of Cureus Inc.






この記事が気に入ったらサポートをしてみませんか?