個人的高校数学最強定理「オイラーの多面体定理」について

うつろうカリキュラムのなかで

 高等学校の数学は中学で習う数学よりもいっそう抽象性が増し、多くの人々の青春時代において微分積分やベクトルという概念たちはことあるごとに立ちはだかる悪役としての役割を果たしてきた。一方で、その抽象性の広がりは、小学校以前から少しずつ広がってきた「数の世界」が際限なく続いていることを予感させることもある。私は数学の魅力にひきこまれて高校時代を過ごした。

 さて、そんな高校数学も、その時代ごとのカリキュラムの変更によって、高校を理系選択で卒業した全ての人がみな同じ内容を学ぶわけではない。有名な例でいえば、「複素数平面」と「行列」は多くの場合カリキュラムの変更で入れ替わることが多い。実際、2017年に高校を卒業した私は、数学Ⅲにおいて「複素数平面」を習い、「行列」は学校では習わなかったのだが、私よりもいくつか上の学年の過程では、数学Cで「行列」を扱い、「複素数平面」は扱わなかった。(なお、このカリキュラム変更で数学Cは数学Ⅲに吸収され消滅した。)

 その時代とともに移り変わる高校数学のカリキュラムにあって、私は幸運なことに「オイラーの多面体定理」を高校の教科書で目にすることができた世代である。「オイラーの多面体定理」は私の記憶では数学Aの教科書に載っていた。これは次のような定理である。

定理 穴の開いていない多面体の頂点の数をV、辺の数をE、面の数をFとすると、公式 V-E+F=2 が成立する。

初めてこの定理を知った人は、なんでもいいから多面体を1つ思い浮かべて(たとえば正4面体や立方体が簡単である。正多面体でなくても構わない。立方体から一部を切り取ってできる多面体なども考えてみるといろいろできる。)、頂点・辺・面の数を数えてV-E+Fを計算してみてほしい。どんな多面体でも、その値は2になるはずだ。正4面体なら、V=4、E=6、F=4なので、V-E+F=4-6+4=2である。

 大学でさらに数学を学んだ今の私からすると、この定理は非常にインパクトが強い。なぜなら、この定理の対象となる「穴の開いてない多面体」は、めちゃくちゃ存在する。正多面体は5種類しかないが、この定理は正多面体のような均整のとれた多面体でなくても成立するのだ。つまり、すべての面が多角形でできていて、穴が開いていないような3次元空間内の立体であればなんでもよいのである。例えば立方体の一部を平面で切除することを繰り返し、彫刻のように細かく面の数を増やしていくことを考えれば、いくらでもこのような多面体の例を作れるであろう。しかしながら結論は、極めてシンプルな1本の式でしかない。多面体という、数学の考察の対象として最も単純ながら際限ない種類の数が存在する対象に対して、1本の式V-E+F=2が共通して成立する。数学の美しさであり強さである「普遍的であること」とはこういうことである、と教えてくれるような定理である。

不遇な定理に映ったオイラーの多面体定理

 私がオイラーの多面体定理を知ったのは、中学生のころ、トポロジーの世界を一般向けに紹介した新書を読んでのことであった。当時は数学がどんな学問であるかも知らず、ただパズルのように漠然と数学が好きだっただけであったが、多面体にこんな法則があるのかと素直に驚きを感じたものである。ところが、私はこの定理を高校の講義で習った時のことを全くと言っていいほど覚えていない。それどころか、受験勉強のときにこの定理の応用問題を解いた記憶が一切ないのである。おそらく、私と同じ世代で数学を使って大学を受験したという人の多くは、この定理の高校数学における影の薄さを認めてくれるのではないかと思う。この影の薄さには、次のような理由が考えられるであろう。

 高校における数学の授業では、生徒に数学の基礎事項を理解させることと同じかそれ以上に、生徒を大学入試の問題に対応させることが重視される傾向にある。大学入試ではまずオイラーの多面体定理の応用問題は出題されにくいと考えられる。オイラーの多面体定理は他の数学Aで習う事項とはやや独立しており、教科書でも定理の主張のみが紹介される程度の扱いなので、大学入試の問題として最適な難易度の応用問題が作りにくいという難点がある。そこで、限られた数学Aの授業時間のなかでは、確率と場合の数や平面図形の性質など他の事項を手厚く解説したほうがよほど「効率的」ということになってしまうのである。

数学の味わいを教えてくれる定理

 しかし、私はこのオイラーの多面体定理こそが、私が高校で履修した数学のカリキュラムの中で、最も重要な定理だったのではないかと今になって思うのだ。重要というのは、単に実生活・実社会への応用が存在するとか、他の分野の理解の基となるという意味ではない。その観点でいえば、確率だとか、微分積分、ベクトルなど、大多数の他の分野のほうが優先度が高くなるであろう。(オイラーの多面体定理の名誉のために言及すると、この定理を含むホモロジー論は十分に実社会に応用されている)数学そのものの広がり、みずみずしさを高校数学で習う定理の中で最も強く感じさせる、という意味で重要だと思うのだ。

 第一に、前述したように、この定理の主張は強く普遍的である。これほどまで普遍的な主張を持つ定理は高校数学において他にはあまり見られない気がする。微分積分や複素数と方程式などに代表される、高校数学の多くの分野の学習では、新たな概念を導入してその基本的な使い方(計算・求値など)が紹介されるというのが一般的である。いわば、さらに進んだ科学・数学を理解するための数学、あるいは道具としての数学という意味合いが強いことが多い。もちろんこのような数学はとても重要なのではあるが、そのような状況においてオイラーの多面体定理はやや異質の定理として映る。似たような異質さを感じさせる定理には同じく数学Aに属していた整数のユークリッドの互除法や、平面図形の数々の定理が挙げられるかもしれない。だが、空間の中にある多面体という対象のつかみどころのなさに比較しての、結論のシンプルさはこの定理こそが最強であるというのが、私の個人的な感想である。

証明を見る

 第二に、この定理の証明の概略は高校生にも十分理解できるものでありながら、細かく観察すると、空間図形の「つながりかた」への深い考察に通じていることである。「つながりかた」とは、より一般の数学のことばでいえば「位相」のことである。オイラーの多面体定理の証明は、高校の教科書には載っていなかったような気がするが、例えば次のようにすればよいであろう。

 まず、多面体を構成する各面は四角形だったり五角形だったり、一般にいろいろな多角形であるが、それぞれの多角形について対角線を引いて、各面を三角形に分割してもよい。なぜなら、n角形には一つの頂点からn-2本の対角線が引けるが、これらの対角線によってn角形を分割することでもとのn角形はn-1個の三角形になる。この操作によって、Vの値は不変、Eの値はn-2増え、Fの値もn-2増える。結局として、V-E+Fは変わらない。この操作を各面について行っていけば、V-E+Fを変えることなく多面体の各面を三角形に分割することができる。(注:多角形の形によっては、対角線が多角形をはみ出してしまい上手く引けない可能性がある。しかし、この場合も、より小さい多角形に分割してからこの操作を行うなどすれば、V-E+Fの値を変えずに三角形に分割することができる。)

 したがって各面が三角形の多面体を考えれば十分である。まず、この多面体から三角形を一つ切除する。こうすることで、Vは不変、Eも不変、Fは1だけ減る。よって、V-E+Fは1減少する。残ったものはもとの多面体に三角形の穴が開いたようなものだが、この穴を広げるように残りの三角形を(つまり、穴に隣接した三角形を)切除していく。まず最初の切除を行うと、切除される三角形は2辺で他の三角形と隣接しているから、切除を行ったとき頂点の数Vは変わらず、辺の数Eは1だけ減る。面の数Fは当然1減るから、結局V-E+Fは変化しない。それ以降の切除では、最初の切除と同じように2辺で他の三角形と隣接する三角形を切除する場合のほかに、1辺のみで他の三角形と隣接する三角形を切除する場合が現れる。前者であればV-E+Fの値が不変であることはすでに見た。後者の場合を考えると、頂点の数Vは切除で1減少し、Eは2減少する。Fは1減少だから、結局V-E+Fは変わらないのである。よって、切除を繰り返してもV-E+Fは不変であり、最終的に1個の三角形しかないところまでたどり着く。1個の三角形に対してV-E+F=3-3+1=1だから、最初穴を空けたときにV-E+Fが1減っていることを加味して、元の多面体のV-E+Fの値は2に等しかったということがわかる。

 以上がオイラーの多面体定理の証明の概略である。厳密には、三角形の切除を繰り返して多面体を1つの三角形にまで小さくできることを証明する必要があるが、高校生の教育に必要なレベルとしてはこれで十分であると思われる。(数学は厳密な学問なので、この言い方は自分でもやや引っ掛かるのだが、多面体から三角形を1つ除いたものがお椀のような形になることから直観的に理解してもらえれば、それでオイラーの多面体定理が高校教科書に載っている教育的効果は十分すぎるほどあると思う)

「トポロジー」への出発点 球面型多面体とトーラス型多面体

 さて、この証明のプロセスを観察すると、高校の数学に足の着いた状態にありながらも、より先にある数学のアイデアの一端に触れることができる。上の証明で重要なことは、最初に多面体に三角形の穴を空けるとき以外に、多面体がバラバラになったり、多面体に最初に空けたもの以外の穴が開いたりしないことである。実際、実験してみるとわかるように、バラバラになったり、他の穴を空けたりすると、その時点でV-E+Fの値が変化してしまう。上の証明ではV-E+Fが変化しないように最初に空けた穴を広げていくのである。これは最初の多面体が球面に位相同型、つまり「面のつながりかた」だけでいえば球面と同じであるからできることなのである。こうして、V-E+Fは多面体の「面のつながりかた」に依存するものであることがオイラーの多面体定理の証明を通して了解されるであろう。(球面型の)多面体に遍く成立する単純な式は、「面のつながりかた=位相」というより柔軟な視点で捉えうることが示唆されている。

 さて、球面型の多面体に対して定理の証明を与えたが、これがもしドーナツの表面のような形(これを2次元トーラスという)の多面体で同じことをやったらどうなるであろうか?

 最初に空けた穴は1つの三角形でも、その穴を広げていくと、どこかでその穴の形がドーナツを一巻きするループのようになってしまう。そしてそこでV-E+Fの値が-1だけ変化してしまう。そのようなV-E+Fの変化が、1つの三角形まで多面体を削っている間に2回起こり、結論としては最初のドーナツ表面型多面体のV-E+Fの値は0であったことが判明する。このように、V-E+Fの値を変化させないと多面体を1つの三角形に小さくすることができないのが、球面型多面体との決定的な違いである。ループのような穴が開いても、多面体がバラバラになったり多面体に新しい穴が空いたりするわけではないが、V-E+Fは変化する。このような「ループ」が2つ存在することが、球面と比較したときの2次元トーラスの特徴である。そして、この多面体をバラバラにしないループの数を数えて図形の分類を行えるということを理論として成立させたのが、位相幾何学(トポロジー)の中心概念となる「ホモロジー理論」である。

 オイラーの多面体定理のV-E+Fという数には「オイラー数」という名前がついており、これは位相幾何学において多面体を超えたより一般の図形(位相空間)に対して定義される。そして、2つの空間のオイラー数は位相が同じと見なせる、すなわち2つの空間の間に「位相同型写像」が存在すれば、一致する。すなわち、オイラー数は「位相不変量」である。対偶を言えば、位相不変量が異なる2つの空間の位相は異なるのである。位相不変量を利用して、空間図形を区別するのは、位相幾何学の重要なアイデアである。

 位相や位相不変量という話は、高校のレベルを超えてしまう。しかし、オイラーの多面体定理は極めて日常的な数学的対象に対する主張でありながら、そういった空間図形を見る高い視点への入り口になっている。手軽に登れる見通しの良い丘であり、遠くにそびえ立つ数学の名峰を見渡せるような丘がオイラーの多面体定理である。

 長くなってしまったが、以上が私が高校数学の定理のうちでオイラーの多面体定理を最も称賛している理由である。受験のための数学としては影の薄くなってしまう定理ではあるが、ひとことでいえば数学のみずみずしさというものをいちばん感じられるような定理であると思う。このような定理の存在をもっと大切にして高校数学の指導が行われれば、微分積分など他の分野の学習にしても生徒のモチベーションを高く保てるのではないかと感じるのである。教科書の中で、少なくとも私が高校生だったときよりはよい扱いを受けるべき定理である。

この記事が気に入ったらサポートをしてみませんか?