Square-1: Advanced JQ 日本語 / English

どうも 最近JQ methodを全部覚え、Cube Shapeを覚えている途中のJackTritonです
Hi, I'm Jack Triton: inventor of JQ method and in-progress of remembering full Cube Shape

今回はJQをさらに早めるAdvanced JQについて解説します
In this article, I'll document about Advanced JQ which is successor method for JQ

読むにあたりまずはJQについてとFull CPSBについてをご覧ください
But first, you need to read about JQ and Full CPSB from below articles

またJQについては動画も作りましたのでそちらでも確認できます
Or you can just watch this video to know about JQ method



進め方・概要 / About

  1. Cube Shape [169]

  2. SFFB (Second Form First Block) [Fig] or First Block + Pair Forming [Fig]

  3. Full CPSB [48(12)]

  4. PES [36]

  5. L4PE [7]

または
Or

  1. CSP [334]

  2. SFFB (Second Form First Block) [Fig] or First Block + Pair Forming [Fig]

  3. Full CPSB [48(12)]

  4. PES [36]

  5. L4PE [3]


Advanced JQはJQ methodをそのまま早くしたような解き方で、主に40秒台の人に向いている解法です
Advanced JQ is successor of JQ and it is meant for solvers around 40 sec. with JQ

覚える手順は46増えますが、その分速くなるのは間違いないでしょう
There are at least 46 new cases to remember but they worth a lot to be faster

JQ同様にケースの判断のしやすさはそのまま引き継いでいます
Same as JQ, it is easy to look-a-head

ここからは各ステップについて解説します
I'll explain each steps from below

どのステップでも解をクリックすれば進め方・セットアップが見れます
For all of steps if you click on the algorithm, you can get the movement and set-ups

練習用に使ってください
Please use it for practicing


1. Cube Shape [169]

この解説については割愛しますがすべて覚えきる、またはスター+見分けやすいものを覚えるで習得しましょう
I'll just skip the instruction but I suggest remembering all of them, or remember Lars Intermediate Cube shape cases at least

そのうちCube Shape + CSPの解説を執筆します
I'll probably make the article about Cube Shape and CSP one day


2-A. SFFB (Second Form First Block)

First Blockを作るときに2-1または1-2群を作るというもの
Create Second Block Pair while creating First Block

3x3x3のDouble Slot F2Lに近いです
前に紹介したCPBBに含まれるのはSFFBとCPSBの省略です
Similar to Double Slot F2L
It is included as CPBB

2-B. Pair Forming

First Blockを作った後残ったSecond Blockの素材からペアを作り、CPSBに繋げやすくすることで個人的にはこちらのほうがやりやすく感じます
1-look pairing of Second Block Pair after First Block
Personally, this is much easier than SFFB

進め方としてコーナーとエッジを対面に離してからやると良いです
Retracting corners and edge would make it easy

ガイドとしては
As guide,

  • エッジがU面にある時は2x2x2の要領でペアにする
    If edge is on U, pair it using the knowledge of 2x2x2

  • エッジがDFまたはDBにある時は対角線上のスラッシュ位置にコーナーを置き、/ でペアにする
    If edge is on either DF or DB, place the pair corner next to Slash then pair

  • エッジがDRにあるときはペアにするコーナーをスラッシュ位置に置き、/ (3, 0) / でペアにする
    If edge is on DR, place the pair corner next to slash then pair it using / (3, 0) /

  • コーナーが揃った状態でD面にある時はUFエッジとDBRコーナーをペアにしてLW-B型にする
    If corners are paired on D, pair UF edge and DBR corner to get LW-B CPSB

  • コーナーが揃った状態でU面にある時はコーナーをF面に二つ置きDBエッジとUFLコーナーをペアにしてLW-B型にする
    If corners are paired on U, place corners on F then pair DB edge and UFL corner to get LW-B CPSB

  • コーナーが向かい合わせになった状態でD面にある時はUBエッジとDFRコーナーをペアにしてLW-F型にする
    If corners are anti paired on D, pair UB edge and DFR corner to get LW-F CPSB

  • コーナーが向かい合わせになった状態でU面にある時はコーナーをR面に二つ置きDFエッジとUBRコーナーをペアにしてLW-F型にする
    If corners are anti paired on U, place corners on R then pair DF edge and UBR corner to get LW-F CPSB


3. Full CPSB [48(12)]

2-1または1-2の状態からCPとSecond Blockをそろえる
Solve CP and Second Block from 2-1 or 1-2 state

全48手順ありますが基本は前回の記事でのLW-BLW-Fの鏡像・位相で出来ているのでミラー手順が得意な人はこれだけで覚えられます
There are 48 cases in total but they are all mirror/derail of either LW-B or LW-F so if you're good at mirror algs, you can remember them by remembering below 12 cases

ミラー手順が苦手な人は前回の記事を読み込んでください
If you're not good at mirror algs, please read the previous Full CPSB article

1. LW - B

2. LW - F


4. PES (Pairing Edge Slot)[36]

Pairing EdgeとDF面と隣り合う面(赤の場合は青と緑)の色を持つU面エッジを揃えるもの
Do Pairing Edge and slot the adjoining face color edge slot of DF face (if DF is red, adjoining faces are blue and green)

ペア化してあったら上記で揃えるエッジグループを(1, 0) / (-1, -1) / (0, 1)を使ってインサートしてください
If they are already paired, insert the edge group using (1, 0) / (-1, -1) / (0, 1)

パターンの内訳としては
For case recognition:

  • 基本形(パターンを読み込む状態)でUF面がDF面と隣り合う面の色か
    Is UF color adjoining the color on DF in Normal Position (Position which you execute the pattern) ?

    >>隣り合う場合はAdjacent Group (Adj)
    >> If it is, it is Adjacent Group (Adj)
    >>違う場合はPositioned Group (Pos)
    >> If it's not, it is Positioned Group (Pos)

  • 本来入っている特定のエッジがどこにあるか
    Where is the slot edge right now?
    >>Adjの場合はUFエッジ
    >> If it is Adj, place of the edge that is supposed to be on UF
    >>Posの場合はURエッジ
    >> If it is Pos, place of the edge that is supposed to be on UR

で判断できます
Then you can execute them

なおすべて8スラッシュ以内で揃えることができるので効率はPairing Edgeと同じです
Also, all cases are around 8 slashes: same steps as Pairing Edges

ここからの表記として上記の画像の左から1, 2, 3とし、特定エッジの位置を数字に続けての後に入れます
Name each pattern by the group on image from left to right as 1, 2, 3 and the place of slot edge after -


4-1. Pos Group

1-UF
(4, 0) / (3, 0) / (2, -1) / (4, 1) / (3, 0) / (3, 0) / (-1, 0)
1 U / 2(U /) (-1, -1) / U (1, 1) / 2(U /)

1-UR
(1, 0) / (-3, 0) / (3, 0) / (-3, 0) / (-1, -1) / (4, 1) / (-3, 0) / (3, 0) / (-1, 0)
1 / (U' / U /) U' / (-1, -1) / U (1, 1) / (U' / U /)

1-UB
(3, -1) / (4, 1) / (-3, 0) / (5, -1) / (-2, 1) / (3, 0) / (3, 0) / (-1, 0)
(U, -1) / U (1, 1) / U' / U2 (-1, -1) / U' (1, 1) / 2(U /)

1-UL
(3, -1) / (3, 0) / (4, 1) / (-4, -1) / (-5, 1) / (-3, 0) / (3, 0) / (-1, 0)
(U, -1) / U / U (1, 1) / U' (-1, -1) / U2 (1, 1) / (U' / U /)

1-DF
(0, -1) / (-3, 0) / (-2, 1) / (-1, -1) / (3, 0) / (4, 1) / (-1, 0)
(0, -1) / U' / U' (1, 1) / (-1, -1) / U / U (1, 1) /

1-DB
(4, 0) / (3, 0) / (-4, -1) / (-3, 0) / (4, 1) / (3, 0) / (-3, 0) / (-3, 0) / (-1, 0)
U 1 / U / U' (-1, -1) / U' / U (1, 1) / (U / U' /) U' /


2-UF
(-2, 0) / (5, -1) / (4, 1) / (5, -1) / (-3, 0) / (3, 0) / (4, 1) / (3, 0) / (-1, 0)
U' 1 / U2 (-1, -1) / U (1, 1) / U2 (-1, -1) / (U' / U /) U (1, 1) / U /

2-UR
(4, 6) / (5, -1) / (4, 1) / (-3, 0) / (3, 0) / (5, -1) / (4, 1) / (-3, 0) / (-1, 0)
1 U D2 / [U2 (-1, -1) / U (1, 1)] / (U' / U / ) [U2 (-1, -1) / U (1, 1)] / U' /

2-UB
(1, 0) / (-4, -1) / (-2, 1) / (3, 0) / (-1, -1) / (-3, 0) / (4, 1) / (3, 0) / (-1, 0)
1 / (U' (-1, -1) / U' (1, 1) /) U / (-1, -1) / U' / U (1, 1) / U /

2-UL
(1, 0) / (3, 0) / (-3, 0) / (-1, -1) / (4, 1) / (-3, 0) / (-1, 0)
1 / (U / U' /) (-1, -1) / U (1, 1) / U' /

2-DF
(-2, 0) / (-3, 0) / (-4, -1) / (-3, 0) / (3, 0) / (-5, 1) / (3, 0) / (-1, 0)
1 U' / U' / U' (-1, -1) / (U' / U /) U2 (1, 1) / U /

2-DB
(3, -1) / (3, 0) / (4, 1) / (3, 0) / (-3, 0) / (5, -1) / (-2, 1) / (-1, 0)
(U, -1) / U / U (1, 1) / (U / U' /) U2 (-1, -1) / U' (1, 1) /


3-UF
(3, -1) / (-2, 1) / (5, -1) / (-3, 0) / (3, 0) / (4, 1) / (3, 0) / (-1, 0)
(U, -1) / U' (1, 1) / U2 (-1, -1) / (U' / U /) U (1, 1) / U /

3-UR
(-3, -1) / (-2, 1) / (-4, -1) / (-3, 0) / (3, 0) / (-5, 1) / (3, 0) / (-1, 0)
(U', -1) / U' (1, 1) / U' (-1, -1) / (U' / U /) U2 (1, 1) / U /

3-UB
(1, 0) / (3, 0) / (-3, 0) / (3, 0) / (-1, -1) / (-2, 1) / (3, 0) / (-3, 0) / (-1, 0)
1 / (U / U' /) U / (-1, -1) / U' (1, 1) / (U / U' /)

3-UL
(-5, 0) / (3, 0) / (-4, -1) / (4, 1) / (5, -1) / (4, 1) / (-3, 0) / (3, 0) / (-1, 0)
U2 -1 / U / U' (-1, -1) / U (1, 1) / U2 (-1, -1) / (U' / U /)

3-DF
(-3, 5) / (-2, 1) / (-3, 0) / (3, 0) / (5, -1) / (4, 1) / (-3, 0) / (-1, 0)
(U', D2-1) / U' (1, 1) / (U' / U /) U2 (-1, -1) / U (1, 1)/ U' /

3-DB
(-3, -1) / (-2, 1) / (-3, 0) / (3, 0) / (5, -1) / (4, 1) / (-3, 0) / (-1, 0)
(U', -1) / U' (1, 1) / (U' / U /) U2 (-1, -1) / U (1, 1) / U' /


4-2. Adj Group

1-UF
(0, -1) / (-3, 0) / (-2, 1) / (-4, -1) / (-3, 0) / (4, 1) / (6, 0) / (-1, 0)
(0, -1) / U' / U' (1, 1) / U' (-1, -1) / U' / U (1, 1) / U2 /

1-UR
(1, 0) / (-3, 0) / (-3, 0) / (-4, -1) / (-2, 1) / (-3, 0) / (-1, 0)
1 / 2(U' /) U' (-1, -1) / U' (1, 1) / U' /

1-UB
(4, 0) / (3, 0) / (-4, -1) / (-3, 0) / (-2, 1) / (-3, 0) / (3, 0) / (-1, 0)
1 U / U / U' (-1, -1) / U' / U' (1, 1) / (U' / U /)

1-UL
(-5, 0) / (5, -1) / (-2, 1) / (2, -1) / (4, 1) / (3, 0) / (3, 0) / (-1, 0)
1 U2 / U2 (-1, -1) / U' (1, 1) / U (-1, -1) / U (1, 1) / 2(U /)

1-DF
(-5, 0) / (2, -1) / (3, 0) / (-3, 0) / (-2, 1) / (2, -1) / (3, 0) / (-2, 1) / (-1, 0)
1 U2 / U (-1, -1) / (U / U' /) U' (1, 1) / U (-1, -1) / U / U' (1, 1) /

1-DB
(6, -1) / (-5, 1) / (-4, -1) / (3, 0) / (4, 1) / (2, -1) / (4, 1) / (-1, 0)
(U2, -1) / U2 (1, 1) / U' (-1, -1) / U / U (1, 1) / U (-1, -1) / U (1, 1) /


2-UF
(0, -1) / (4, 1) / (-4, -1) / (-5, 1) / (-3, 0) / (3, 0) / (3, 0) / (-1, 0)
(0, -1) / U (1, 1) / U' (-1, -1) / U2 (1, 1) / (U' / U /) U /

2-UR
(4, 0) / (-3, 0) / (3, 0) / (2, -1) / (-2, 1) / (5, -1) / (-2, 1) / (-3, 0) / (-1, 0)
U 1 / (U' / U /) U (-1, -1) / U' (1, 1) / U2 (-1, -1) / U' (1, 1) / U' /

2-UB
(1, 0) / (-4, -1) / (-5, 1) / (-4, -1) / (3, 0) / (-3, 0) / (-5, 1) / (-3, 0) / (-1, 0)
1 / U' (-1, -1) / U2 (1, 1) / U' ( -1, -1) / (U / U' /) U2 (1, 1) / U' /

2-UL
(3, 5) / (3, 0) / (-3, 0) / (-2, 1) / (2, -1) / (-5, 1) / (2, -1) / (4, 1) / (-1, 0)
(U, D2-1) / (U / U' /) U' (1, 1) / U (-1, -1) / U2 (1, 1) / U (-1, -1) / U (1, 1) /

2-DF
(-5, 0) / (5, -1) / (-2, 1) / (-4, -1) / (-5, 1) / (-3, 0) / (3, 0) / (3, 0) / (-1, 0)
U2 1 / U2 (-1, -1) / U' (1, 1) / U' (-1, -1) / U2 (1, 1) / (U' / U /) U /

2-DB
(1, 0) / (3, 0) / (-4, -1) / (-5, 1) / (-3, 0) / (3, 0) / (3, 0) / (-1, 0)
1 / U / U' (-1, -1) / U2 (1, 1) / (U' / U /) U /


3-UF
(1, 0) / (2, -1) / (4, 1) / (3, 0) / (-3, 0) / (5, -1) / (-2, 1) / (-1, 0)
1 / U (-1, -1) / U (1, 1) / (U / U' /) U2 (-1, -1) / U' (1, 1) /

3-UR
(-5, 0) / (2, -1) / (-5, 1) / (3, 0) / (-3, 0) / (-4, -1) / (-2, 1) / (-1, 0)
U2 1 / U (-1, -1) / U2 (1, 1) / (U / U' /) U' (-1, -1) / U' (1, 1) /

3-UB
(1, 0) / (3, 0) / (-3, 0) / (-4, -1) / (4, 1) / (2, -1) / (-2, 1) / (-3, 0) / (-1, 0)
1 / (U / U' /) [U' (-1, -1) / U (1, 1) / U (-1, -1) /  U' (1, 1) /] U' /

3-UL
(-5, 0) / (2, -1) / (4, 1) / (3, 0) / (-3, 0) / (5, -1) / (4, 1) / (6, 0) / (-1, 0)
U2 1 / U (-1, -1) / U (1, 1) / (U / U' /) U2 (-1, -1) / U (1, 1) / U2 /

3-DF
(1, 0) / (2, -1) / (3, 0) / (-3, 0) / (-5, 1) / (-4, -1) / (4, 1) / (-1, 0)
1 / U (-1, -1) / (U / U' /) U2 (1, 1) / U' (-1, -1) / U (1, 1) /

3-DB
(1, 6) / (2, -1) / (3, 0) / (-3, 0) / (-5, 1) / (-4, -1) / (4, 1) / (-1, 0)
(1, D2) / U (-1, -1) / (U / U' /) U2 (1, 1) / U' (-1, -1) / U (1, 1) /


5. L4PE [7]

最後に残ったペア化した4つのエッジを1Lookで揃えます
Finally, pair remain 4 paired edges in 1-Look

ここではUFエッジとDF面を見てパターンを判断しましょう
You can recognize the case by watching UF edge and DF face

ここで、F面が反対色を持つことを I (Inverted)
それがU面ならU、D面ならD、両面ならB
を前につける
そしてU面に底面エッジがあるなら O (Oriented)をつける
Name the case according the relation:
I (Inverted) >> F has opposite color
If that is on U, place U before I
If that is on D, place D before I
If both, place B before I
O (Oriented) >> U has bottom edge


UI
(3, 0) / (3, 3) / (-1, 0) / (2, -4) / (4, -2) / (0, -2) / (-4, 2) / (1, -5) / (3, 0) / (3, 3) /

DI
/ (-3, 0) / (-2, 5) / (4, 2) / (0, 2) / (2, 4) / (-2, 0) / (-4, 3) / (3, 0) / (4, 0) / (-3, 0) / (-4, 5) / (0, 1)

BI
(1, 0) / (5, -1) / (1, 1) / (6, 0) / (-1, 0)

OBI
(1, 0) / (-1, -1) / (0, 1)

O
(-5, 0) / (-1, -1) / (6, 1)

OUI
/ (3, 3) / (-5, 0) / (4, 4) / (0, 2) / (2, 2) / (0, 5) / (3, 3) / (0, 2) / (3, 3) / (0, 3) / (-5, -5) / (2, 0)

ODI
/ (3, 3) / (-1, 0) / (2, 2) / (2, 0) / (4, 4) / (0, 1) / (3, 3) / (0, 2) / (1, 1) / (0, -3) / (-3, -3) / (2, 0)


これで全パターンについて解説しました
That is all cases

ここからはこれを使った実際のソルブを書きます
Below this is the example solves

お試しソルブ / Example Solves

1.
Scramble
:
(-5,0)/ (6,0)/ (0,-3)/ (-4,-4)/ (1,-5)/ (6,-3)/ (-4,0)/ (-3,0)/ (3,-1)/ (0,-3)/ (4,0)/ (2,0)/ (3,0)/ (2,0)

Solution:
(-2, -2) / (5, -4) / (3, -4) / (2, 1) / (0, 3) / -- Cube Shape
(1, -3) / (3, 6) / -- SFFB
(2, -1) / (3, 0) / -- CPSB RW-F
(-2, 1) / (3, 0) / (-4, -1) / (-5, 1) / (-3, 0) / (3, 0) / (3, 0) / -- PES Adj 2-DB
(6, 0) / (5, -1) / (6, 0) / (6, 1) -- L4PE + Center Align

2.
Scramble
:
(0,2)/ (3,0)/ (-5,-2)/ (3,-3)/ (-4,-1)/ (4,0)/ (3,0)/ (-4,-5)/ (0,-2)/ (-2,0)/ (-1,-2)/ (0,-2)/ (-3,0)

Solution:
(-3, 4) / (0, -2) / (-1, -2) / (0, 1) / (0, 3) / -- Cube Shape
(-5, 0) / (5, 2) / (-3, -3) / (-5, 1) / -- SFFB
(3, 0) / (0, 3) / (3, 6) / (0, 3) / (0, 3) / -- CPSB LW-B
(6, 0) / (3, 0) / (-4, -1) / (-3, 0) / (4, 1) / (3, 0) / (-3, 0) /   -- PPE Pos 1-DB
(2, -1) / (1, 1) / (6, 0) / (5, 6) -- L4PE

3.
Scramble
:
(1,0)/ (2,-1)/ (-3,3)/ (-2,-2)/ (0,-3)/ (3,0)/ (-1,0)/ (0,-3)/ (0,-1)/ (6,-4)/ (-2,-5)/ (-3,0)/ (2,0)

Solution:
(4, 6) / (2, 0) / (-4, 0) / (1, 0) / (-1, 0) / (0, -3) / -- Cube Shape
(-3, -4) / (4, -5) / -- SFFB
(2, -4) / (3, 0) / (-3, 0) / (-2, 4) / -- CPSB L-BW
(-4, -1) / (-3, 0) / (-2, 1) / (-1, -1) / (3, 0) / (4, 1) / -- PES Pos 1-DF
(6, 0) / (-1, -1) / (6, -5) -- L4PE

4.
Scramble
:
(-2,0)/ (3,3)/ (6,0)/ (0,-3)/ (-1,-1)/ (-3,0)/ (0,-2)/ (3,0)/ (-3,-4)/ (0,-4)/ (0,-2)/ (-3,-2)/ (6,0)

Solution:
(2, -1) / (2, 0) / (0, -3) / (2, 1) / (3, 0) / -- Cube Shape
(3, -1) / (4, 4) / (-1, -1) / -- SFFB
(4, -2) / (-3, 0) / (0, -3) / (6, -3) / (6, 3) / -- CPSB R-FW
(-3, 0) / (-3, 0) / (-4, -1) / (-3, 0) / (3, 0) / (-5, 1) / -- PES Pos 2-DF
(-4, -1) / (1, 1) / (6, 0) / (2, 3) -- L4PE

5.
Scramble
:
(-3,2)/ (-2,1)/ (-3,-3)/ (-4,-1)/ (3,0)/ (-5,0)/ (-3,-3)/ (1,0)/ (6,-2)/ (-2,-1)/ (0,-4)/

Solution:
(4, 0) / (-1, 0) / (2, 0) / (-2, -1) / (3, 3) / -- Cube Shape
(3, 2) / (-3, 3) / -- SFFB
(1, 1) / (0, 3) / (0, 3) / (-3, 0) / (3, 0) / (3, 6) / -- CPSB R-FW
(3, 0) / (3, 0) / (-3, 0) / (-1, -1) / (4, 1) / (-3, 0) / -- PES Pos 2-UL
(2, 0) / (3, 3) / (-1, 0) / (2, -4) / (4, -2) / (0, -2) / (-4, 2) / (1, -5) / (3, 0) / (3, 3) / (6, 6) -- L4PE


後書き / Conclusion

いかがだったでしょうか
自分としてはやっとさらに早くできる方法が確立できたかなと思います
How was it?
I think it definitely get faster and withstand as great method

少しでもこのやり方が役に立ったら高評価、フォローの方をおねがいします
また「こんなやり方もどう?」などはコメントの方にお願いします
Please leave the Like, Follow, and suggestion on Comments

ここまでのご清覧ありがとうございました
Thanks for reading

いいなと思ったら応援しよう!