見出し画像

ソーシャルディスタンス

Social distance 社会的距離(ソーシャルディスタンス)
CORONA lotion  ENTROPY・ エントロピー

三行半(みくだりはん・離縁状)の行き違いを考察

エントロピーは、ドイツの物理学者ルドルフ・クラウジウスが、カルノーサイクルの研究をする中で、移動する熱を温度で割ったQ/Tという形で導入され、当初は熱力学における可逆性と不可逆性を研究するための概念であった。後に原子の実在性を強く確信したオーストリアの物理学者ルートヴィッヒ・ボルツマンによって、エントロピーが原子や分子の「乱雑さの尺度」であることが論証された。

エントロピーは、熱力学、統計力学、情報理論など様々な分野で使われている。しかし分野によって、その定義や意味付けは異なる。よってエントロピーを一言で説明することは難しいが、大まかに「何をすることができて、何をすることができないかを、その大小で表すような量」であると言える。

エントロピーに関わる有名な性質として、熱力学におけるエントロピー増大則がある。エントロピー増大則は、断熱条件の下で系がある平衡状態から別の平衡状態へ移るとき、遷移の前後で系のエントロピーが減少せず、殆ど必ず増加することを主張する。

エントロピー(英: entropy)は、熱力学および統計力学において定義される示量性の状態量である。熱力学において断熱条件下での不可逆性を表す指標として導入され、統計力学において系の微視的な「乱雑さ」を表す物理量という意味付けがなされた。統計力学での結果から、系から得られる情報に関係があることが指摘され、情報理論にも応用されるようになった。物理学者のエドウィン・ジェインズ(英語版)のようにむしろ物理学におけるエントロピーを情報理論の一応用とみなすべきだと主張する者もいる。

これは単なる数式上の一致ではなく、統計力学的な現象に対して情報理論的な意味づけを与える事ができることを示唆する。情報量は確率変数Xが数多くの値をとればとるほど大きくなる傾向があり、したがって情報量はXの取る値の「乱雑さ」を表す尺度であると再解釈できる。よって情報量の概念は、原子や分子の「乱雑さの尺度」を表す統計力学のエントロピーと概念的にも一致する。

しかし、情報のエントロピーと物理現象の結びつきは、シャノンによる研究の時点では詳らかではなかった。この結びつきは、マクスウェルの悪魔の問題が解決される際に決定的な役割を果たした。シラードは、悪魔が分子について情報を得る事が熱力学的エントロピーの増大を招くと考えたが、これはベネットにより可逆な(エントロピーの変化ない)観測が可能である、と反例が示された。最終的な決着は1980年代にまで持ち越された。ランダウアーがランダウアーの原理として示していたことであったのだが、悪魔が繰り返し働く際に必要となる、分子についての以前の情報を忘れる事が熱力学的エントロピーの増大を招く、として、ベネットによりマクスウェルの悪魔の問題は解決された。

この原理によれば、コンピュータがデータを消去するときに熱力学的なエントロピーが発生するので、通常の(可逆でない=非可逆な)コンピュータが計算に伴って消費するエネルギーには下限があることが知られている(ランダウアーの原理。ただし現実の一般的なコンピュータの発熱とは比べるべくもない規模である)。また理論的には可逆計算はいくらでも少ない消費エネルギーで行うことができる。

さらにエドウィン・ジェインズ(英語版)は統計力学におけるギブズの手法を抽象することで、統計学・情報理論における最大エントロピー原理を打ち立てた。この結果、ギブズの手法は統計学・情報理論の統計力学への一応用例として再解釈されることになった。

統計力学と情報理論の関係は量子力学においても成立しており、量子統計力学におけるフォン・ノイマン・エントロピーは量子情報の情報量を表していると再解釈された上で、量子情報や量子計算機の研究で使われている。

液体(: liquid)は物質の三態(固体・液体・気体)の一つである。気体と同様に流動的で、容器に合わせて形を変える。液体は気体に比して圧縮性が小さい。気体とは異なり、容器全体に広がることはなく、ほぼ一定の密度を保つ。液体特有の性質として表面張力があり、それによって「濡れ」という現象が起きる。

液体の密度は一般に固体のそれに近く、気体よりもはるかに高い密度を持つ。そこで液体と固体をまとめて「凝集系」などとも呼ぶ。一方で液体と気体は流動性を共有しているため、それらをあわせて流体と呼ぶ。

液体は、固体と気体と並んで物質の三態の一つである。物質内の原子あるいは分子の結合する力が熱振動(格子振動)よりも弱くなった状態であり、構成する粒子が互いの位置関係を拘束しないために自由に移動することができ、いわゆる流体の状態となる。このような状態を物質が液相であるという。

臨界圧力以下ならば、物質ごとに決まった温度で固体から液体へ構造相転移(一次相転移)する。この固体から液体への転移温度が融点である。また、一定の圧力のまま更に温度を上げると分子の振動が強まって分子間の距離が大きくなり、(過熱が起きない場合)ある定まった温度で飽和蒸気圧がその圧力に達し、液体内部から気体が発生する。この時の転移温度が、沸点である。逆に温度を下げれば、気体→(液化)→液体→(凝固)→固体となる。過冷却が起きない限り、凝固点は融点と等しい。但し、融点、沸点は、圧力など外的条件の影響により変化する。

液体状態では、原子、分子は比較的自由かつランダムに動き回っている(ブラウン運動)。

参照 https://eman-physics.net/thermo/entropy.html
資料 ウイキペディア


「2016年の浦島太郎」 きのうの「タイソンとトランプ」は評判がよかった。閲覧が近年になく多くの数を示した。ま数がすべてではないが・・・


#今わたしにできること

この記事が気に入ったらサポートをしてみませんか?