マガジンのカバー画像

異常検知

5
運営しているクリエイター

#成果物

「ToyADMOS:異常音検知」手法比較:CNN と AutoEncoder

はじめに機械学習(ML)やディープラーニング(DL)の発展が目覚ましいため、この分野に関心を持っておりました。基礎から学ぶためにAidemyプレミアム(データ分析:6か月)を受講しました。 略歴: 半導体前工程データ分析(8年)⇒産業用ロボットの故障予知など(5年) 背景産業用機器の予兆・異常検知では振動計やモータ電流等を用いた手法が中心です。最近、音を用いた検出技術についても実用化されてきていますが、まだまだ事例が少ないです。従来の異音検査では検査員の勘や経験に頼る部分

「ToyADMOS:異常音検知」:CNN

「ToyADMOS:異常音検知」手法比較:CNN と AutoEncoder の続きです。CNNのコードと実行結果サンプルを以下に示します。 概要この例では、CNNをトレーニングします。 データセットは、ToyADAMOSのToyCar、Case4、CH1です。 このデータセットには、1335 の正常データ、263個の異常データが含まれ、それぞれに 528000 のデータポイントがあります。各例には、0(正常音)または1(異常音)のいずれかのラベルが付けられています。ここ

「ToyADMOS:異常音検知」:AutoEncoder

「ToyADMOS:異常音検知」手法比較:CNN+DNN と AutoEncoder の続きです。AutoEncoderのコードと実行結果サンプルを以下に示します。 概要この例では、オートエンコーダーをトレーニングして異常を検出します。 データセットは、ToyADAMOSのToyCar、Case4、CH1です。 このデータセットには、1335 の正常データ、263個の異常データが含まれ、それぞれに 528000 のデータポイントがあります。各例には、0(正常音)または1(

教師なし学習による異常音検知~AutoEncoder色々~

「ToyADMOS:異常音検知」手法比較:CNN と AutoEncoderの続きです。 背景CNN(教師あり学習)とAutoEncoder(教師なし学習)を比較した場合、f1-score、Recall(再現率)・Precision(適合率)・学習時間において、CNNがAutoEncoderよりも優れている結果となりました。一方で、異常検知というタスクでは、未知の異常モードが存在するため教師なし学習の方が望ましいです。そのため、教師なし学習AutoEncoderの複数のモデ