見出し画像

オイラー学派のソボレフ2

ソボレフと原子爆弾
人間の力は、理想的な無形の価値を創造し伝達する能力にあります。数学は、無謬の知的技術の最古の技術を保持しています。根拠のある計算の科学と芸術、数学は文化の中心に位置しています。思想の自由は、個人の自由の必須条件です。世界観の基礎である数学は、自由の基礎となり保証人となります。オイラーとそのスクールの最高の代表者の仕事は、これの無数の例を提供しています。ソボレフの運命も例外ではなかった。

20世紀に入って、人類は第一次世界大戦と第二次世界大戦の扇動者を止めることができずに、安全な存在の境界線に来た。抑止力は自由の保障人であるが、アメリカとロシアの原爆製造は、科学の驚異的な力、つまり人類生存の最後の予備軍であることを示している。数学者は、このプロセスに同僚が参加していることを誇りに思う。ノイマンとウラムはマンハッタン計画で働き、ソボレフとカントロヴィッチは国内のエノモルモズ計画に関わっていた。

今日では、核兵器開発の歴史に関わる文書のほとんどが機密解除され公開されており、あの英雄的な時代の熱気を感じることができます。

我が国における原子力事業の開始は、1942年9月28日付のGKO令No 2352号「ウランに関する事業の組織化について」に関連づけられています。 数ヶ月後、GKOは、原子力エネルギーの研究のためにソ連科学アカデミーの第2研究所を組織することを決定した。クルチャトフは、研究所の管理と原子問題に関するすべての作業を任されました。すぐにクルチャトフはソボレフを副官に任命し、キコインのグループに加わり、同位体分離のためのカスケード型拡散装置を用いたウラン濃縮を担当した。

特別フォルダーには、1945年8月のクルチャトフとキコインの報告書が入っています。 この文書の前文には次のように書かれています。


"海外で知られている4つの原子爆弾(ウラン235とプルトニウム239)の製造方法のうち、「ウラン235とプルトニウム239の製造方法」と「プルトニウム239とプルトニウム239の製造方法」の2つを紹介します。ウラングラファイトボイラ法、ウラン重水ボイラ法、拡散法、磁気法、第二研究室の第一人者(学識経験者のクルチャトフ、ソボレフ、科学アカデミーのキコイン、ボズネセンスキーに相当するメンバー)は、これらの最初の3つの方法について、第二研究室は現在、施設を設計し、建設するのに十分なデータを持っていると考えています。”

早くも1946年には最初のガス濃縮器が製造され、大量生産が可能になりました。ガス状六フッ化ウラン濃縮実験開始 その仕事は、膨大な数の多様な科学的、技術的、組織的な問題を解決しなければならず、ソボレフの本業となった。ソボレフは、プルトニウム239とウラン235の両グループで働き、計算機の組織化と指導、工業用同位体分離の規則の開発、損失削減の責任者、その他多くの組織的・技術的な問題の解決を行った。原子力プロジェクトでの彼の役割は大きくなっていた。

1949年8月29日、セミパラチンスク近郊でRDS-1の実験が行われ、そのちょうど2ヶ月後には、800人以上の参加者が原爆計画に参加していたことが明らかになりました。ソボレフはレーニン勲章を受章した。

1949年半ばには、第2研究室は「LIPAN-科学アカデミー計測研究所」に改称されました。LIPANでは、ソボレフは、彼の人生の主要な本、"数理物理学における関数解析のいくつかの応用 "を書いた。

画像1

原子計画はソボレフの科学的、個人的な可能性を豊かにした。計算数学は、彼の人生の最後まで彼の仕事の中心を占めていました。1952年から1960年までは、モスクワ国立大学の計算数学科を率いました。すでにシベリアで、ソボレフは、その普遍性の驚くべき美しさ、立方式の理論を構築しました。ソボレフは、古典的な近似法と分布理論の概念を統合しました。

LIPANでの仕事は、ソボレフの数学の理解に新たな明るい色を加えました。彼によれば、多くの問題において重要なのは、解決策があるかどうかという抽象的な問題ではなく、合理的な近似変形を規定の期限までに具体的に提示することであることに気付いたのは、この頃だったそうです。

新しい微分-新しい微積分
ずっと前の1755年に、オイラーは関数の普遍的な定義を与えましたが、それはほぼ200年間、最も一般的で完璧なものと考えられていました。彼の有名な微分積分のコースで、以下のように書いています:

"ある量が,他の量に依存し,他の量が変化するときに、変化を受けるなら、前者は後者の関数と呼ばれる。この呼称は非常に広範で、ある量を他の方法で決定するすべての方法をカバーしています。したがって,もし x が変数量を表すならば,何らかの方法で x に依存するすべての量,すなわち x によって決定されるすべての量は,その関数と呼ばれる.

画像2

ソボレフの研究は、微分方程式の解の概念の再考に関連している。

ソボレフはコーシー問題を汎関数空間で解くことを提案した.すなわち,関数としての解を理解するのを止めた.ソボレフは、プロセスの挙動のすべての積分特性が使える場合でさえ、微分方程式を解いたものとして考えることを始めた。この場合、時間の関数としての解は未知であるだけでなく、存在しないこともあります。予測の重要な原理の質的に新しい理解が科学に入りました。

ソボレフの一般化された導関数はオイラー関数の概念には該当しない。ソボレフが提案した微分は、数学的数量の相互依存性の新しい理解に基づいています。一般化された関数は、あらかじめ選択されたサンプル関数のクラスのすべての代表に対するその効果の積分特性によって暗黙的に定義される。

ソボレフは、関数分析を数学物理学に応用した先駆者の一人であり、1935年に理論を発表した。 10年後に独立して同じ考えに到達したローラン・シュワルツの研究により、新しい微積分が一般に利用可能になり、代数学、幾何学、位相幾何学の多くの進歩的な考えを利用した、優雅で強力で極めて透明性の高い分布の理論として発表された。

17世紀の微分積分は、古典力学の一般的な見解と切り離せないものである。一般化された関数の理論は量子力学と結びついています。

特に強調したいのは、量子力学は古典力学の単純な一般化ではなく、新しい法則に基づいた科学的な世界観を表しているということです。古典的な決定論と連続性は、量子化と不確定性に取って代わられました。二十世紀の人類は、自然過程の理解度の全く異なるレベルに達しました。

画像3

現代の数学理論も同様である。現代の論理は、アリストテレスの論理を一般化したものではありません。バナッハ空間の幾何学は、ユークリッド平面幾何学の一般化ではありません。現代の微積分となった分布理論は、微分方程式による物理過程の数学的記述の技術全体を激変させた。

ニュートンとライプニッツの発見は、何世紀にもわたって続いてきた微分・積分の前史を総括し、新たな研究への道を開いた。ルベークとソボレフの業績は、創意に富んだ先人たちの反省を継続し、現代の数学者の道を照らすものであった。

ソボレフは未来を聞き、自分のスペースを持って人々に贈り物をしました。彼の発見は、数学における多くの革命的な変化のきっかけとなりました。

ソボレフは最後の一連の数学研究では、オイラー多項式の根の微妙な特性に専念していました...

"セルゲイ・リヴォヴィッチを見た多くの人は、彼がハンサムだったと言うだろう。背が高く、エネルギッシュな動き、素早い足取り。彼の演説は常に非常に明快で、優れた論争家とみられていましたが、めったに論争しなかったのは、彼が正しいことが多かったからかもしれません。セルゲイ・リヴォヴィッチは常に慈悲深く、他人の意見を尊重しました。

ソボレフは優秀なプロモーターであり、様々な聴衆の前で講演していました。たまたま小学生に関数解析とは何かを説明したとき、彼は最も難しいことにまで言及しませんでしたが、非常に明確でわかりやすく数学のこの分野の立場と重要性について生徒たちに伝えることができました。”ーーАкадемик, д. ф.-м. н., советник РАН Ю. Г. Решетняк, ИМ СО РАН


この記事が気に入ったらサポートをしてみませんか?