見出し画像

同価点系★

分子

下図は対称類~6・mのステレオ投影図です.図aに記載されている対称要素は主軸~6(6回回映軸),鏡映面3枚m(太い線分),紙面内にある2回軸3本(基円上に両端が現れている),対称心-1があります.ステレオ投影は地図作りでも用いられますが,地球の表面の点を平面(基円内)に投影する方法でした.地球を北極側から見ていると想像しましょう.ステレオ投影の〇印は,北半球の表面にある点,×印は南半球にある点の投影像です.

球面上の1点に対称類(点群)の対称操作を作用させ生じる点の全体(同価点系,あるいは正則点系)を考察します.元の点を球面上で動かすと,他のすべての点も動きます.生じる同価点系の点の数は,元の点が対称要素の1つに当たるまで変わりません.

図aは,一般点に対称操作を作用させて生じた同価点のステレオ投影図です.全部で12個(=対称操作の数=群の位数)の同価点が生じています.

図bは,特殊位置(鏡映面上にある場合)に元の点がある場合で,ステレオ投影で生じる同価点の数は6個と半減しました.

図cは,特殊位置(2回軸上ある場合)に元の点がある場合で,ステレオ投影で生じる同価点の数は6個です.やはり半減しました.

図dは,元の点が3回軸と3つの対称面上にある場合で,同価点の総数は6分の1になります.

図eのように,元の点が,すべての対称要素が交差する特異点にある場合ならば,対称操作により生じる点はすべて重なってしまうので,ステレオ投影で生じる点も1点です.この点の多重度は12.

Fig.72改造2

1つの点に重なる同価点の数を,その点の多重度と呼びます.
同価点の系(正則点系)で,点の多重度とその点の同価点数の積は一定で,群の位数になります.(対称類~6・mの位数は12)

同価点・多重度


図a,b,c,d,eの正則点系を構築する際に,対称類は同じままであるという仮定がありました.しかし,図b,cの点系を比較すると,これらは異なる対称性を持っことがわかります:例えば,図bの系には3回軸があり,図cの系には6回軸があります.このように一見矛盾しているように見えるのは,まだ点自体の対称性を無視しているからです.点は〇で表現されていますが,実際には〇ではなく,図a,b,c,d,eの5つの系で,点の対称性は全く異なっています.

図aでは,点(一般点と呼ぶ)はどの対称要素にも乗っておらず,その多重度は1で,完全に非対称である.図bの系では,元の点は対称面m上に位置し,点の対称性は鏡映対称mです;図cの系の点は,2回対称を持ちます.図dでは,点の対称性は3・mを持ちます.

以上,対称類~6・mを例にして,適当に選んだ1点に対称操作を作用させて,同価点の系(正則点系)を作りました.これを,単純点系といいます.これに対して,複合点系というのは単純点系の組み合わせで作れます.

それぞれの種類の点は,独自の同価点系を形成し,異なる系に属する点は互いに同価ではありません.
複合系の記述には,点の多重度の相対比が重要です.例えば,多重度が2,6,12の3つの単純系からなる複合系があったとしましょう.この相対比は,1,3,6となる.この数は化学組成において重要な役割を果しています.すべての分子は,数学的近似において「点」と見做せる原子またはイオンよりなりますから,同価な原子(イオン)は1つの単純形をつくり,構成原子(イオン)の相対比はそれらの原子(イオン)が占める位置の対称性の制約となります.

Table.3改造


この記事が気に入ったらサポートをしてみませんか?