見出し画像

from Newton's 2nd law to Lagrange's and Hamilton's eqution

Newton's 2nd law $${\sum X_i=m_i\ddot{x_i}}$$  
         $${\sum Y_i=m_i\ddot{y_i}}$$
         $${\sum Z_i=m_i\ddot{z_i}}$$
  d'Lambert's principle ↓
         $${\sum X_i+(-m_i\ddot{x_i})=0}$$  as ploblem of statics
         $${\sum Y_i+(-m_i\ddot{y_i})=0}$$
         $${\sum Z_i+(-m_i\ddot{z_i})=0}$$
          ↓ principle of virtual displacement
Lagrange's variatioal equation
 $${\sum \{(X_i-m_i\ddot{x_i})\delta x_i+(Y_i-m_i\ddot{y_i})\delta y_i+(Z_i-m_i\ddot{z_i})\delta z_i\}=0}$$
   when force is conservative force
   $${X_i=-\dfrac{\partial U}{\partial x_i}}$$、$${Y_i=-\dfrac{\partial U}{\partial y_i}}$$、$${Z_i=-\dfrac{\partial U}{\partial z_i}}$$
   $${\sum m_i(\ddot{x_i}\delta x_i+\ddot{y_i}\delta y_i+\ddot{z_i}\delta z_i)=-\delta U}$$
          ↓ as variational representation
Hamilton's principle
 $${\displaystyle\int_{t_1}^{t_2}(\delta T+\delta'W)dt=0}$$  
   when force is conservative force     principle of least action
 $${\delta\displaystyle\int_{t_1}^{t_2}\mathscr{L}dt=0}$$、$${\mathscr{L}=T-U}$$        $${\delta\displaystyle\int_{t_1}^{t_2}2Tdt=0}$$
          ↓ 
Lagrange's equation of motion
 $${\dfrac{d}{dt}\Big(\dfrac{\partial\mathscr{L}}{\partial\dot{q_i}}\Big)-\dfrac{\partial\mathscr{L}}{\partial{q_i}}=0}$$
          ↓ 
Lejendre transformation      in general
 $${\mathscr{H}=\sum\dot{p}q-\mathscr{L}}$$        $${g\Big(\dfrac{\partial f}{\partial x},y\Big)=\dfrac{\partial f}{\partial x}x-f(x,y)}$$
          ↓ 
Hamilton's cannonical eqation
 $${\dfrac{dq_i}{dt}=\dfrac{\partial\mathscr{H}}{\partial p_i},         \dfrac{dp_i}{dt}=-\dfrac{\partial\mathscr{H}}{\partial q_i}}$$
          ↓ 
cannonical transformation 
 i) $${W=W_1(\{q_i\},  \{Q_i\},  t)}$$      ii) $${W=W_2(\{q_i\},\{P_i\},t)}$$
  $${p_i=\dfrac{\partial W_1}{\partial q_i},      P_i=-\dfrac{\partial W_1}{\partial Q_i}}$$      $${p_i=\dfrac{\partial W_2}{\partial q_i},      Q_i=\dfrac{\partial W_2}{\partial P_i}}$$
 iii) $${W=W_3(\{p_i\},\{Q_i\},t)}$$      iv) $${W=W_4(\{p_i\},\{P_i\},t)}$$
  $${q_i=-\dfrac{\partial W_3}{\partial p_i},      P_i=-\dfrac{\partial W_3}{\partial Q_i}}$$     $${q_i=-\dfrac{\partial W_4}{\partial p_i},      Q_i=\dfrac{\partial W_4}{\partial P_i}}$$



                   → 力学、物理数学の目次へ

この記事が気に入ったらサポートをしてみませんか?