マガジンのカバー画像

AIのビジネス導入を考える上で読みたい記事

15
これからAI (機械学習や深層学習) をビジネスに導入したい、自社のデータを活用したい人にお役立ちの記事をピックアップしています。
運営しているクリエイター

#ビッグデータ

データ戦略の会社が考える「データ分析の概要を掴むオススメ記事」

これまでに書いたデータ分析に関する記事について、オススメの記事や相互の関係性をはっきりさせるための見出しを作ってみました。これは今後も記事を追加するたびに、更新していこうと思います。 1) AI導入/DXに必要不可欠な「データ戦略」が実現性とプロジェクトの効果を最大化する → AI/IoTを含むデータサイエンス技術をビジネスの成果に結びつけるためのフレームワーク「データ戦略」の7要素について説明しています。(2020/4) 2) なぜ結果が出ないAI導入/DXが多いのか

データ戦略の会社が考える「成果が出ないデータ分析/AI導入が多い理由と、 成功確率を上げるために何が必要なのか」

最初にタイトルに対する結論ですが、成功確率を上げる、つまりビジネス上の意味がある成果を得る確率を高めるために必要なものは 1) ビジネス上の成果と紐付いた適切な「目的」 2) 目的を達成するための「戦略」 3) 戦略を実行するための「チーム(+チームが使えるリソース)」 4) チームが本来の力を発揮するための「セットアップ(立て付け・お膳立て)」 です。 この記事では、まず最も重要な目的について考えてみます。 他の2) 〜4) は、全て目的がなければ、始まりません。こ

データ戦略の会社が考える「ビジネスでのデータ活用に必要な”データ戦略”の4要素」

2020/04/30追記: データ戦略に必要な4要素 --> データ戦略の7要素にUpdateしました! 以下のリンク先記事が最新版ですのでご覧ください。  ---- はじめに:データ戦略とは弊社は「データ戦略」の会社であり、社名にDataStrategyと名付けています。私も、自分の肩書に、それなりに意味を持って「データストラテジスト」と付けています。 実は英語圏でも、「データ戦略(Data Strategy)」という言葉は、一部のプレーヤーがそれぞれの定義で使うこ

データ戦略の会社が考える「データ分析・AIのビジネス導入に必要な4つのポジション」

分業チームの必要性AI.Accelerator座長の進藤さんのツイッターで以下のような内容がありました。 私の認識でも、データ分析・AI導入は、今の時点(2019年4月時点)では多くの企業に取って「チーム戦」を取らざるを得ないと考えています。それも、「社内の人間・社外の人間を含めたワンチーム」によるチーム戦です。 サッカーをするならゴールキーパー、ディフェンダー、ミッドフィルダー、フォワードが必要なように、自社にいる人材で賄えるならよいし、そうでないなら社外のチームと協力