マガジンのカバー画像

行列計算を使わない線形代数

13
運営しているクリエイター

#ベクトル

行列計算を使わない線形代数 #0

大学の初年度で学習する線形代数は、冒頭から連立方程式などを扱うためなのか、数学の初歩だと思われています。実際に演習で行うのも、行列の変形や連立方程式、行列式の計算、固有値・対角化の計算などと、どちらかというと計算中心になっています。大学のテキストもそのような構成になっているものがほとんどです。 しかし、線形代数は計算中心の応用数学ではありません。 いまの形で整備されたのは20世紀前半のことであり、線形代数は数学の中でも比較的新しい領域です。そのため代数だけではなく、関数解

行列計算を使わない線形代数 #8 〜 線形写像(その3) 線形写像の共役

■定義8.1 $${V}$$を有限次元のベクトル空間とし、$${X}$$を$${V}$$の部分空間であるとする。このとき、$${X}$$の直行空間(annihilator)$${X^\perp}$$を $$ X^\perp := \{ f \in V^* \,\,|\,\, f(x)=0, \,\, \forall x \in X \} $$ で定義する。$${X^\perp}$$は$${V^*}$$の部分空間になる。 ■命題8.2 定義8.1の仮定のもとで、$${

行列計算を使わない線形代数 #12 〜 線形写像(その5) 対角化・最小多項式・一般固有空間

■定義12.1(再掲:対角化可能) 有限次元ベクトル空間上の線形写像$${A:V\to V}$$の固有空間$${E_\lambda , \lambda\in\sigma(A)}$$が$${V}$$を直和分解するとき、$${A}$$は対角化可能であるという。 ■定理12.2(再掲) 有限次元ベクトル空間上の線形写像$${A}$$が対角化可能であるための必要十分条件は、 $$ \displaystyle \prod_{\lambda\in\sigma(A)} (A-\l