見出し画像

TED ブライアン・グリーン:宇宙はひとつしか存在しないのか?

TEDにて

ブライアン・グリーン:宇宙はひとつしか存在しないのか?

(詳しくご覧になりたい場合は上記リンクからどうぞ)

我々の住むユニバースの他にも宇宙はそこかしこに存在するのでしょうか?

映像を交えたスリルのある話し方で、ブライアン・グリーンが物理学上の未知の問題(何がビッグバンを起こしたかを始めとする数々の問題)を考えることが、多元ユニバースの可能性につながることを示唆します。Fly?

この枠組とは、地球、銀河系、その他の銀河のはるか向こうでは、我々のユニバースはひとつではなく、沢山のユニバースが入り混じった「多元ユニバース」というものの一部であるという可能性です。

CERN(セルン)の巨大ハドロン衝突型加速器で、ヒッグス粒子がほぼ見つかったことで、標準理論よりも大きな枠組みであるSuper Symmetric Theory(スーパーシンメトリック理論:超対称性理論)というものがあって

Super String Theory(スーパーストリング理論)のSuper(超)とは、このSuper Symmetric Theory(スーパーシンメトリック理論:超対称性理論)のSuper(超)から派生しています。

ここで、言われているダークエネルギー(暗黒エネルギー:dark energy)とは、量子力学黎明期に言われていた黒体(こくたい: black body)あるいは、完全放射体(かんぜんほうしゃたい)と同じような表現です。

アインシュタインの一般相対性理論が、改良されたビックバン宇宙論のキーポイントとなるようです。

この理論は、1929年に始まります。偉大な天文学者エドウィン・ハッブルが、遥か彼方にある銀河が我々からどんどん遠ざかっているのに気付き宇宙がだんだんと大きくなり膨張している事実を確立しました。

そして、ユニバースにダークエネルギーがどのくらいあれば、膨張の加速が起こるか?天文学者が計算したところこの様な答えが出ました。とても小さな数字となっています。

ストリング理論では、粒子の質量、力の強さ、そして、何よりもダークエネルギーの量が、次元の形によって決定されます。もし、これら余剰次元の形が解れば、特徴を計算できつつダークエネルギーの量も計算できます。

問題は、これら余剰次元の形が、世界の誰にもわかっていないと言う事です。わかればノーベル賞をもらう事も可能です。

さて、これまでビックバンの爆発の元となった力については、何も説明がありませんでした。

しかし、このギャップを埋めたのが、改良されたビッグバン理論です。インフレーション宇宙論とも呼ばれ、これによるとユニバース空間の外への膨張に必要な燃料は何かを特定してます。場の量子論に関係しています。

これまでに出てきた結論を統合した結果、現時点では、私達のユニバースは、スーパーストリング理論の計算によると多数の泡の集合した多元ユニバースの一つの泡に過ぎないそうです。

場の量子論(Quantum Field Theory)は、粒子性と波動性を調和させるために100年前位に構築されています。

100年近くかけて膨大に蓄積された世界中の数値化されたデータを源にして、自然現象を裏付けされた法則に収斂させています。これらは、標準理論にも深く関係してきます。

そして、1957年にエヴェレットが提案した「エヴェレットの公理」。また、シュレーディンガー方程式は、この理論でも重要な役割を果たしています。

そして、シュレーディンガー方程式とは、1926年にオーストリアの物理学者エルヴィン・シュレーディンガーが量子力学の理論の整合性をとるために波動力学という体系を提唱した際の基礎方程式として提案された。

当時は、波動性と粒子性の問題が持ち上がっていて、実験事実を丁寧に方程式の形式にまとめあげた物理学の巨人のひとりです。

なので、一般式なシュレーディンガー方程式は、ディラック方程式から場の量子論まで量子力学全般で使う事ができます。基礎方程式といわれるゆえんです。

アインシュタインの光電効果仮説(1905年)。アインシュタイン・ドブロイの関係式や量子からマクロ世界のニュートン力学に拡張する過程で、古典力学での方程式は量子力学から導出されるとも言われる(プランク定数をゼロに近似したとき)

ボーアの量子条件やハイゼンベルクの不確定性原理でも整合性がとれています。

次元に関してはこの場合、数学的な次元を前提としています。

次元のコンパクト化の説明の前に、数学的な次元の重要性について、さて、一般相対性理論をカルツァは、電磁気力に応用していきます。

当時は、それが重力以外に考えられる唯一の力でした。つまり、電気や、磁石の引き付けなどを引き起こす力のことです。
ここで空間と時間が歪むこと以外に、もしも次元が歪むことで電磁気力が働くかもしれないことに気づきます。

1926年にオスカークラインも、知覚で見えない次元がある可能性を示します。5 次元化して電磁気力も幾何学として表せるようにしたカルツァ・クライン理論というものです。

カルツァが3次元ではなく、4次元の宇宙における歪みと曲がりを説明する方程式を書き出した時、彼はアインシュタインがすでに3次元で導き出していた方程式を見出しました。それらは、重力を説明するための方程式です。

でも、カルツァは次元がひとつ増えたことによるもうひとつの方程式も見つけました。その方程式を見てみるとそれは正に科学者たちが長年の間。電磁力を表すために使ってきた方程式でした。驚くべきことです。それが、こつぜんと計算結果に現れてきたのです。

こうして、数学的な次元は、空間の量子化を数値的に表現できるようになっていくキッカケになりました。

その後のカルツァ・クライン理論は、無限に存在する次元の形状の一部をカラビ・ヤウ多様体として表現できました。

例えば、手を振って大きな弧を描く時、手のひらは3つの広がった次元の中ではなく、巻き上げられた次元の中を突っ切っています。

もちろん、巻き上げられた次元はとても小さいので、体を動かす間に、こうした次元を1サイクルして出発点に戻ることが繰り返され、その回数は、膨大な数にのぼります。このように次元の広がりが小さいと言う事は、手のような大きな物体が動く余地があまりないと言うことです。

それは結局、平均化されてしまい腕を振った時でも、私たちは巻き上げられたこのような次元を横断し膨大に旅したことに全く気づいていません。

これは、結び目の不変量にも関連しています。

まず初めに、円周を3次元ユークリッド空間に埋め込んだものを「結び目」と定義していることから始まります。

結び目理論においては、変形して移り合う「結び目」は、同じ「結び目」とみなして「結び目」を研究する。

「結び目」を研究するひもの結び方はいろいろあるので、様々なタイプの「結び目」がある。では、「結び目」のタイプはどのようにして区別すれば良いのであろうか?

「結び目」に対して定められる値で、「結び目」を変形することに関して不変であるようなものを「不変量」と言う。結び目理論は、トポロジー(位相幾何学)の一分野である。

1980年代に、数理物理的手法が、低次元トポロジーに導入されて、3次元トポロジーにおいては「結び目」と3次元多様体の膨大な数の不変量(量子不変量)が発見された。

これによって、4次元トポロジーには、ゲージ理論がもたらされることになりました。これらからゲージ場の数学的根拠として、活用されることになっていきます。

次元のコンパクト化については・・・

トポロジーの結び目理論に登場するチャーン・サイモンズ理論から数値化して表現していきます。

例えば、これはボール。球で表面に格子が組まれています。正方形の形をしていますね。ここで説明することは、レオンハルト・オイラーによって見出されたことです。1700年代の偉大な数学者です。その発見は数学のとても重要な分野である代数的位相幾何学へと発展しました。

私たちの論文もここにルーツがあります。では説明しましょう。ここには8つの頂点、12の辺と6つの面があります。頂点の数から辺の数を引き、面の数を足すと2となります。2です。まあ、そんなもんでしょう。別のケースを見てみましょう。三角形で覆ってみます。

今度は、12の頂点。30の辺、20の面があり、20枚のタイルで覆われていますが、頂点-(辺+面)は、またもや2になります。実際のところ、覆うものが、たとえ、三角形や他の多角形。それが混合していようとも結果は同じで、頂点-(辺+面)は、2になるのです。

今度は、別の形です。トーラスでドーナツ状の形をしています。これを長方形で覆います。頂点は16、辺は32、面の数は16です。頂点-(辺+面)は0になります。いつだって0です。トーラスは、正方形、三角形や他のどんなもので覆っても0になるのです。

このような数をトポロジーのオイラーの標数といいます。位相不変量と呼ばれるものの一種です。とても興味深いことです。どの様にやっても、いつも同じ結果が得られます。この分野は、1700年代中頃に芽生え、今では、代数的位相幾何学と呼ばれるものになりました。

チャーン・サイモンズ理論は、ここにヒントを得て、より高い次元の理論へと高次元の物体へと拡げ、新たな不変量を見い出します。

素粒子のゲージ理論にもチャーン・サイモンズ理論は、応用されてます!定数。

量子力学では、古典力学のxyz位置じゃなく、波動方程式なのでsinやcos位相を主に時空間を数値化します。

ゲージ対称性、アイソスピン、クォーク理論、ヒッグス粒子など。

さらに、数理物理に由来する量子群や共形場理論、チャーンサイモンズ理論もあります。

そして、スーパーストリング理論や量子化学の「変分法」にも応用されている。

量子不変量は、数理物理に由来する量子群や共形場理論やチャーンサイモンズ理論を背景として、様々な代数構造を用いて構成される量子不変量やこれに関連するトピックを研究する研究領域を量子トポロジーと呼ばれています。

古典的な結び目理論においては、個々の結び目の特性を個別に研究する研究が中心であったが、量子トポロジーでは多くの「結び目の集合」を研究対象としています。

1980年代に結び目の不変量が大量に発見される発端になったのは、1914年にジョーンズ多項式と言う結び目不変量が発見されたことにあります。

その後、統計物理で知られていたヤンバクスター方程式の多数の解、つまり「R行列」を用いて大量の結び目不変量が発見されました。

さらに、1980年代後半に量子群が、発見されたことにより、それらの大量の不変量は、量子不変量として整理されて理解されるようになりました。

1990年代には、これらの大量の量子不変量を統一的に扱って、研究する2つの手法が開発されました。

これは、次元のコンパクト化への始まりになります。

1つは、コンセビッチ不変量と言う1つの巨大な不変量に、すべての量子不変量を統一する方法。

もう一つは、バシリエフ不変量と言う「共通の性質」で不変量を特徴づける方法があります。

詳しくは、ご覧ください!必見です。

<提供>

東京都北区神谷の高橋クリーニングプレゼント

独自サービス展開中!服の高橋クリーニング店は職人による手仕上げ。あなたが服を持ち込む手間も無用。家まで届けてくれる。お手頃50ですよ。往復送料、詳細は、今すぐ電話。東京都内限定。北部、東部、渋谷区周囲。地元周辺区もOKです

この記事が気に入ったらサポートをしてみませんか?