#1 【頭の体操】 機械学習 ✕ 数学: Accuracy と Recall から F-measure を求める

#1 【頭の体操】 機械学習 ✕ 数学: Accuracy と Recall から F-measure を求める

機械学習 ✕ 数学 の頭の体操として、下記の問題を考えてみましょう。
確率の問題として考えてみてください。

【問題】

ある2クラス分類のタスクを機械学習で取り組んだとする。モデルの学習後、テストデータを用いて評価をしたところ、正解率 (Accuracy) が 81.0%、再現率 (Recall) が 90.0% という結果が得られた。このとき、 F値 (F-measure) も評価していたとすると、その値はいくらとなるか答えなさい。ただし、テストデータのうち10.0%が正例、90.0%が負例とする。


正解は 48.6% (18/37) になります。

アプローチはいくつかあり得ますが、解説では確率の公式を使って解いていきます。
※ Confusion Matrix を書いて考えてみるともっと簡単に解けるかと思いますが、頭の体操として…


【解説】

F-measure は Precision と Recall の調和平均なので、まずは Precision を求めることを考えていきましょう。

2クラス分類ですので、正例を t = 1, 負例を t = 0 とし、予測が正を y = 1, 予測が負を y = 0 と表します。

すると、まずテストデータの情報から下式が得られます。

画像1

更に、Recall と Accuracy の情報より下式が得られます。

画像2

また、求めたい Precision はベイズの定理を用いると下式で表されることに注意しておきましょう。

画像3

この分子の式はすぐに求まります。

画像4

一方、分母はいくつかのステップを踏む必要があります。

この続きをみるには

この続き: 390文字 / 画像10枚

#1 【頭の体操】 機械学習 ✕ 数学: Accuracy と Recall から F-measure を求める

巣籠 悠輔

110円

この記事が気に入ったら、サポートをしてみませんか?
気軽にクリエイターの支援と、記事のオススメができます!
本を書いたり、講義をしたりしています。著書に『詳解ディープラーニング』『ディープラーニング G検定 公式テキスト』などがあります。noteでは、オリジナル書籍・コンテンツをアップしたり、これまでの講義教材をアップしたりしていきます。 https://yusugomori.com