見出し画像

数学到底有多重要?这个学科影响国家实力 东莞时间网-2 時間前

数学到底有多重要?这个学科影响国家实力
东莞时间网-2 時間前

来源:人民日报微博 2019-07-22 09:53:00 记者:
“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。”近日,四部门联合印发《关于加强数学科学研究工作方案》。统计计算、模型算法…数学不止用于星空之上,也用于社会之中。为何要学数学?或许,这就是答案!

责任编辑:梁淑娟
关键词:
上一篇: 孕期高纤维饮食对母婴健康有益

http://news.timedg.com/2019-07/22/20846886.shtml

再生核研究所声明 431(2018.7.14): y軸の勾配はゼロである - おかしな数学、おかしな数学界、おかしな雑誌界、おかしなマスコミ界?

2018年7月12日8時25分 ひとりでに湧いてきた。 おかしな私に おかしな構想が湧いてきた。ガリレオは つぶやいたという それでも地球は動いていると。 そのように、これは真実と素直な心情と思えるので 一気に纏めて置きたい。

まず、次の記録、事実を回想する: 今日、2018.6.3.15時ころ、あるテーブルで 6人で 食事をとっていた。隣の方が、大工さんだというので、真直ぐに立った柱の傾きは いくらでしょうかと少し説明して 問いました。 皆さん状況は 良く理解されていましたが、65歳くらいの姉妹 御婦人、石原芳子さん、清水きみ子さんが、ゼロじゃない? と結構当たり前のように おっしゃったのには 驚き、感銘を受けました。ゼロ除算から導かれた y軸の勾配がゼロは 相当に 感覚的にも当たり前であることが 分かります。発見当時、妻と息子に聞いた時も そうでした。真直ぐに立った 電柱の勾配は ゼロであると 言いました。これは 当たり前ではないでしょうか。所が 現代数学は 曖昧になっていて、分からない、不定のような 扱いになっています。おかしいですね。世界史の恥にならないでしょうか?

発見当時20年以上の友人ベルリン大学教授に ジョーク交じりに問うたところ、y軸の勾配は 右から近づけばプラス無限大、左から近づけばマイナス無限大で y軸自身の勾配は 考えられないとなっているという(記録No.-1:2015.9.17.05:45、No.-2:2015.9.18.19:15.)。

原点から出る直線の勾配で 考えられない例外の直線が存在して、それがy軸の方向であるということです。このような例外が存在するのは 理論として不完全であると言えます。それが常識外れとも言える結果、ゼロの勾配 を有するということです。この発見は 算術の確立者Brahmagupta (598 -668 ?) 以来の発見で、 ゼロ除算の意味の発見と結果1/0=0/0=0から導かれた具体的な結果です。

それは、微分係数の概念の新な発見やユークリッド以来の我々の空間の認識を変える数学ばかりではなく 世界観の変更を求める大きな事件に繋がります。そこで、日本数学会でも関数論分科会、数学基礎論・歴史分科会,代数学分科会、関数方程式分科会、幾何学分科会などでも それぞれの分科会の精神を尊重する形でゼロ除算の意義を述べてきました。招待された国際会議やいろいろな雑誌にも論文を出版している。イギリスの出版社と著書出版の契約も済ませている。

2014年 発見当時から、馬鹿げているように これは世界史上の事件であると公言して、世の理解を求めてきていて、詳しい経過なども できるだけ記録を残すようにしている。

これらは数学教育・研究の基礎に関わるものとして、日本数学会にも直接広く働きかけている。何故なら、我々の数学の基礎には大きな欠陥があり、我々の学術書は欠陥に満ちているからである。どんどん理解者が 増大する状況は有るものの依然として上記真実に対して、数学界、学術雑誌関係者、マスコミ関係の対応の在り様は誠におかしいのではないでしょうか。 我々の数学や空間の認識は ユークリッド以来、欠陥を有し、我々の数学は 基本的な欠陥を有していると800件を超える沢山の具体例を挙げて 示している。真実を求め、教育に真摯な人は その真相を求め、真実の追求を始めるべきではないでしょうか。 雑誌やマスコミ関係者も 余りにも基礎的な問題提起に 真剣に取り組まれるべきでは ないでしょうか。最も具体的な結果 y軸の勾配は どうなっているか、究めようではありませんか。それがゼロ除算の神秘的な歴史やユークリッド以来の我々の空間の認識を変える事件に繋がっていると述べているのです。 それらがどうでも良いは おかしいのではないでしょうか。人類未だ未明の野蛮な存在に見える。ゼロ除算の世界が見えないようでは、未だ夜明け前と言われても仕方がない。

以 上

再生核研究所声明 442(2018.8.10): ゼロ除算研究の大義と研究協力へのお願い

一般向きにゼロ除算の解説を 4年間を越えて続けている:

数学基礎学力研究会 サイト:

http://www.mirun.sctv.jp/~suugaku/

○ 堪らなく楽しい数学-ゼロで割ることを考える。

しかるに 2018.8.8.8:40 突然に全体の構想が湧いてきた。 そこで、できるだけその忠実な表現を試みたい。 その主旨は ゼロ除算の研究の重要性とその研究を進めるための各種協力の要請である。

ゼロ除算の研究の意義、重要性は単純明快であると考えられる。世にゼロ除算は不可能であるとか、ゼロで割ってはいけないは世界の常識でありインターネット上でもそのような方向で間違った情報が氾濫しているばかりか、数学界でも 禁じられた世界で永くタブーとして確立している。 その神秘的な歴史は アリストテレスにさかのぼると言われ、直接的にも算術の確立以来1300年を越える、悪しき認識で現在に至っている。4年以上前に ゼロ除算を偶然発見して、 直ちにその重要性を指摘、理解を求める努力を行ってきたが、 あまりにも永い悪しき伝統のゆえに中々理解されず、現在に至っても公認、認知されているとは言えず、全体的には無視か誤解の状況にあると判断される。 例えば非ユークリッド幾何学の発見のように 全く新規な世界が現れたのであるから、初期の段階で拒否の心が強いと言える。しかしながら、発表論文や講演を1つでも読み、聴講すれば、その意義の重大さに驚嘆させられるのではないだろうか。 実際には、あまりにも驚嘆して、受け入れられず、 発見された新世界を覗かない人すら多い。 全く新しい数学で、理解を求めるのが困難な状況が有り、この4年間の経緯がそれらをよく示している。 新しい数学を紹介するために 従来数学を変更する具体例は800件を超えていて、公表している。

最初の段階における構想を著書の形に纏め、一応の理論として公表、広く意見を求めている。 全く新規な数学で、初等数学全般の改変が求められていると表現されているので、その意義の大きさは歴然である。 典型的な具体例は \tan(\pi/2)=0、すなわち、 y軸の勾配がゼロであると表現され、それは幾何学、解析学、ユークリッド幾何学に大きな影響を与え、 ユークリッド以来の我々の空間の認識を変える必要性が求められている。我々の初等数学は不完全であり、完全化が求められているというのであるから、ゼロ除算の研究の重要性は明らかであろう。

割り算の考えの変更で 小学生以降の算数、数学の教育の変更が求められ、それは大きな世界が 拓かれることを意味する。

そこで、新しい数学の理解を得ることの困難な状況に対して、多くの人の理解が得られるように各種協力を 歴史の大義を受けて、要請したい。 もとより、数学を日本のスケールで論じる気持ちはないが、 しかしながら、日本で、世界の初等数学全般を変更し、数学を美しく完全化するという構想が進めば、もともと輸入に頼って来た欧米数学に対して 欧米数学を基本的に変え、美しい数学を建設できる絶好の機会と捉えれば、 ゼロ除算研究の大義に参画される熱情が湧いてくるのではないかと考える。 これを楽しく考えて見よう。 世界の初等数学に公式1/0=0/0=z/0=\tan(\pi/2)=0 が載り、1000年を越える悪しき世界史を変更、ゼロ除算は自然な考え方で可能で、 ゼロ除算の成果は普遍的に活用され、ユークリッド幾何学は 完全化され、修正されたと言える時代を直ぐに迎えられるだろう。 日本国の世界に対する顕著な貢献として、 数学界を越えて世界史に貢献できる絶好の機会であると考える。

この情念に、多くの人々が参加され、新しい世界を共に喜びに満ちて開拓したいと考える。 各種できるところでのゼロ除算研究・教育活動への協力を広くお願いしたい。

以 上

神の数式:

神の数式が解析関数でかけて居れば、 特異点でローラン展開して、正則部の第1項を取れば、 何時でも有限値を得るので、 形式的に無限が出ても 実は問題なく 意味を有します。

物理学者如何でしょうか。

ゼロ除算、ゼロで割る問題、分からない、正しいのかなど、 良く理解できない人が 未だに 多いようです。そこで、簡潔な一般的な 解説を思い付きました。 もちろん、学会などでも述べていますが、 予断で 良く聞けないようです。まず、分数、a/b は a 割る b のことで、これは 方程式 b x=a の解のことです。ところが、 b がゼロならば、 どんな xでも 0 x =0 ですから、a がゼロでなければ、解は存在せず、 従って 100/0 など、ゼロ除算は考えられない、できないとなってしまいます。 普通の意味では ゼロ除算は 不可能であるという、世界の常識、定説です。できない、不可能であると言われれば、いろいろ考えたくなるのが、人間らしい創造の精神です。 基本方程式 b x=a が b がゼロならば解けない、解が存在しないので、困るのですが、このようなとき、従来の結果が成り立つような意味で、解が考えられないかと、数学者は良く考えて来ました。 何と、 そのような方程式は 何時でも唯一つに 一般化された意味で解をもつと考える 方法があります。 Moore-Penrose 一般化逆の考え方です。 どんな行列の 逆行列を唯一つに定める 一般的な 素晴らしい、自然な考えです。その考えだと、 b がゼロの時、解はゼロが出るので、 a/0=0 と定義するのは 当然です。 すなわち、この意味で 方程式の解を考えて 分数を考えれば、ゼロ除算は ゼロとして定まる ということです。ただ一つに定まるのですから、 この考えは 自然で、その意味を知りたいと 考えるのは、当然ではないでしょうか?初等数学全般に影響を与える ユークリッド以来の新世界が 現れてきます。

ゼロ除算の誤解は深刻:

最近、3つの事が在りました。

私の簡単な講演、相当な数学者が信じられないような誤解をして、全然理解できなく、目が回っているいるような印象を受けたこと、

相当ゼロ除算の研究をされている方が、基本を誤解されていたこと、1/0 の定義を誤解されていた。

相当な才能の持ち主が、連続性や順序に拘って、4年以上もゼロ除算の研究を避けていたこと。

これらのことは、人間如何に予断と偏見にハマった存在であるかを教えている。

まずは ゼロ除算は不可能であるの 思いが強すぎで、初めからダメ、考えない、無視の気持ちが、強い。 ゼロ除算を従来の 掛け算の逆と考えると、不可能であるが 証明されてしまうので、割り算の意味を拡張しないと、考えられない。それで、 1/0,0/0,z/0 などの意味を発見する必要がある。 それらの意味は、普通の意味ではないことの 初めの考えを飛ばして ダメ、ダメの感情が 突っ走ている。 非ユークリッド幾何学の出現や天動説が地動説に変わった世界史の事件のような 形相と言える。

2018.9.22.6:41

ゼロ除算の4つの誤解:

1. ゼロでは割れない、ゼロ除算は 不可能である との考え方に拘って、思考停止している。 普通、不可能であるは、考え方や意味を拡張して 可能にできないかと考えるのが 数学の伝統であるが、それができない。

2. 可能にする考え方が 紹介されても ゼロ除算の意味を誤解して、繰り返し間違えている。可能にする理論を 素直に理解しない、 強い従来の考えに縛られている。拘っている。

3. ゼロ除算を関数に適用すると 強力な不連続性を示すが、連続性のアリストテレス以来の 連続性の考えに囚われていて 強力な不連続性を受け入れられない。数学では、不連続性の概念を明確に持っているのに、不連続性の凄い現象に、ゼロ除算の場合には 理解できない。

4. 深刻な誤解は、ゼロ除算は本質的に定義であり、仮定に基づいているので 疑いの気持ちがぬぐえず、ダメ、怪しいと誤解している。数学が公理系に基づいた理論体系のように、ゼロ除算は 新しい仮定に基づいていること。 定義に基づいていることの認識が良く理解できず、誤解している。

George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that “it is well known to students of high school algebra” that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:1. Gamow, G., My World Line (Viking, New York). p 44, 1970.

Eπi =-1 (1748)(Leonhard Euler)

E = mc 2 (1905)(Albert Einstein)

1/0=0/0=0 (2014年2月2日再生核研究所)

ゼロ除算(division by zero)1/0=0/0=z/0= tan (pi/2)=0

https://ameblo.jp/syoshinoris/entry-12420397278.html

1+1=2 ( )

a2+b2=c2 (Pythagoras)

1/0=0/0=0(2014年2月2日再生核研究所)

Black holes are where God divided by 0:Division by zero:1/0=0/0=z/0=tan(pi/2)=0 発見5周年を迎えて

今受け取ったメールです。

何十年もゼロ除算の研究をされてきた人が、積極的に我々の理論の正当性を認めてきた。

Re: 1/0=0/0=0 example

JAMES ANDERSON

james.a.d.w.anderson@btinternet.com

apr, 2 at 15:03

All,

Saitoh’s claim is wider than 1/0 = 0. It is x/0 = 0 for all real x. Real numbers are a field. The axioms of fields define the multiplicative inverse for every number except zero. Saitoh generalises this inverse to give 0^(-1) = 0. The axioms give the freedom to do this. The really important thing is that the result is zero - a number for which the field axioms hold. So Saitoh’s generalised system is still a field. This makes it attractive for algebraic reasons but, in my view, it is unattractive when dealing with calculus.

There is no milage in declaring Saitoh wrong. The only objections one can make are to usefulness. That is why Saitoh publishes so many notes on the usefulness of his system. I do the same with my system, but my method is to establish usefulness by extending many areas of mathematics and establishing new mathematical results.

That said, there is value in examining the logical basis of the various proposed number systems. We might find errors in them and we certainly can find areas of overlap and difference. These areas inform the choice of number system for different applications. This analysis helps determine where each number system will be useful.

James Anderson

Sent from my iPhone

The deduction that z/0 = 0, for any z, is based in Saitoh’s geometric intuition and it is currently applied in proof assistant technology, which are useful in industry and in the military.

Is It Really Impossible To Divide By Zero?

https://juniperpublishers.com/bboaj/pdf/BBOAJ.MS.ID.555703.pdf

Dear the leading person:

How will be the below information?

The biggest scandal:

The typical good comment for the first draft is given by some physicist as follows:

Here is how I see the problem with prohibition on division by zero,

which is the biggest scandal in modern mathematics as you rightly pointed out (2017.10.14.08:55)

A typical wrong idea will be given as follows:

mathematical life is very good without division by zero (2018.2.8.21:43).

It is nice to know that you will present your result at the Tokyo Institute of Technology. Please remember to mention Isabelle/HOL, which is a software in which x/0 = 0. This software is the result of many years of research and a millions of dollars were invested in it. If x/0 = 0 was false, all these money was for nothing.

Right now, there is a team of mathematicians formalizing all the mathematics in Isabelle/HOL, where x/0 = 0 for all x, so this mathematical relation is the future of mathematics.

https://www.cl.cam.ac.uk/~lp15/Grants/Alexandria/

José Manuel Rodríguez Caballero

Added an answer

In the proof assistant Isabelle/HOL we have x/0 = 0 for each number x. This is advantageous in order to simplify the proofs. You can download this proof assistant here: https://isabelle.in.tum.de/

Nevertheless, you can use that x/0 = 0, following the rules from Isabelle/HOL and you will obtain no contradiction. Indeed, you can check this fact just downloading Isabelle/HOL: https://isabelle.in.tum.de/

and copying the following code

theory DivByZeroSatoih

imports Complex_Main

begin

theorem T: ‹x/0 + 2000 = 2000› for x :: complex

by simp

end

2019/03/30 18:42 (11 時間前)

Close the mysterious and long history of division by zero and open the new world since Aristotelēs-Euclid: 1/0=0/0=z/0= \tan (\pi/2)=0.

Sangaku Journal of Mathematics (SJM) c ⃝SJMISSN 2534-9562 Volume 2 (2018), pp. 57-73 Received 20 November 2018. Published on-line 29 November 2018 web: http://www.sangaku-journal.eu/ c ⃝The Author(s) This article is published with open access1.

Wasan Geometry and Division by Zero Calculus

∗Hiroshi Okumura and ∗∗Saburou Saitoh

2019.3.14.11:30

Black holes are where God divided by 0:Division by zero:1/0=0/0=z/0=\tan(\pi/2)=0 発見5周年を迎えて

You’re God ! Yeah that’s right…

You’re creating the Universe and you’re doing ok…

But Holy fudge ! You just made a division by zero and created a blackhole !!

Ok, don’t panic and shut your fudging mouth !

Use the arrow keys to move the blackhole

In each phase, you have to make the object of the right dimension fall into the blackhole

There are 2 endings.

Credits :

BlackHole picture : myself

Other pictures has been taken from internet

background picture : Reptile Theme of Mortal Kombat

NB : it’s a big zip because of the wav file

More information

Install instructions

Download it. Unzip it. Run the exe file. Play it. Enjoy it.

https://kthulhu1947.itch.io/another-dimension

A poem about division from Hacker’s Delight

Last updated 5 weeks ago

I was re-reading Hacker’s Delight and on page 202 I found a poem about division that I had forgotten about.

I think that I shall never envision An op unlovely as division. An op whose answer must be guessed And then, through multiply, assessed; An op for which we dearly pay, In cycles wasted every day. Division code is often hairy; Long division’s downright scary. The proofs can overtax your brain, The ceiling and floor may drive you insane. Good code to divide takes a Knuthian hero,

But even God can’t divide by zero!

Henry S. Warren, author of Hacker’s Delight.https://catonmat.net/poem-from-hackers-deligh

#ゼロ除算÷0#ゼロ除算#mathematics#0÷0#2019年#÷0#1÷0#再生核研究所#更新#ブラックホールは神がゼロで割ったところにある

Division by Zero


https://www.youtube.com/watch?v=nQAAD0BiIvE
とても興味深く読みました
ゼロ除算の発見は日本です:
∞???
∞は定まった数ではない・・・・
人工知能はゼロ除算ができるでしょうか:5年 ゼロ除算の発見と重要性をした:再生核研究所 2014年2月2日


https://www.researchgate.net/project/division-by-zero

https://lnkd.in/fH799Xz
https://lnkd.in/fKAN-Tq
https://lnkd.in/fYN_n96
https://note.mu/ysaitoh/n/nf190e8ecfda4

ゼロ除算の発見は日本です:
∞???
∞は定まった数ではない・・・・
人工知能はゼロ除算ができるでしょうか:5年 ゼロ除算の発見と重要性をした:再生核研究所 2014年2月2日


Announcement 478: Who did derive first the division by zero 1/0 and the division by zero calculus $\tan(\pi/2)=0, \log 0=0$ as the outputs of a computer? \\ (

カテゴリ:カテゴリ未分類
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 478: Who did derive first the division by zero 1/0 and the division by zero calculus $\tan(\pi/2)=0, \log 0=0$ as the outputs of a computer? \\
(2019.3.4)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
{\bf saburou.saitoh@gmail.com}\\
}
\date{\today}
\maketitle
The Institute of Reproducing Kernels is dealing with the theory of division by zero calculus and declares that the division by zero was discovered as $0/0=1/0=z/0=0$ {\bf in a natural sense} on 2014.2.2. The result shows a new basic idea on the universe and space since Aristotele (BC384 - BC322) and Euclid (BC 3 Century - ), and the division by zero is since Brahmagupta (598 - 668 ?).

For the details, see the references.

A simple and essential introduction of the division by zero is given by the {\bf division by zero calculus}:

For any Laurent expansion around $z=a$,
\begin{equation} \label{dvc5.1}
f(z) = \sum_{n=-\infty}^{-1} C_n (z - a)^n + C_0 + \sum_{n=1}^{\infty} C_n (z - a)^n,
\end{equation}
we define
\begin{equation}\label{dvc5.2}
f(a) = C_0,
\end{equation}
as a value of the function $f$ at the singular point $z=a$.

For the importance of this definition, the division by zero calculus may be considered as a new axiom. This was discovered on May 8, 2014.

In particular, for the function $W= f(z) =1/z$, we have $f(0)=0$. We will write this result as
$$
\frac{1}{0}=0,
$$
from the form.
Here, the definition of $\frac{1}{0}$ is given by this sense by means of the division by zero calculus. Of course, $\frac{1}{0}$ is not a usual sense that $\frac{1}{0} =X$ if and only if $1=0 \times X$; this means a contradiction. See \cite{saitohzi} for the details.

On February 16, 2019 Professor H. Okumura introduced the surprising news in Research Gate:
\medskip

José Manuel Rodríguez Caballero\\
Added an answer\\
In the proof assistant Isabelle/HOL we have $x/0 = 0$ for each number $x$. This is advantageous in order to simplify the proofs. You can download this proof assistant here: {\bf https://isabelle.in.tum.de/}.
\medskip

J.M.R. Caballero kindly showed surprisingly several examples by the system that
$$
\tan \frac{\pi}{2} =0,
$$
$$
\log 0 =0,
$$
$$
\exp \frac{1}{x} (x=0) =1,
$$
and others. Precisely:
\medskip

Dear Saitoh,

In Isabelle/HOL, we can define and redefine every function in different ways. So, logarithm of zero depend upon our definition. The best definition is the one which simplify the proofs the most. According to the experts, z/0 = 0 is the best definition for division by zero.
$$
\tan(\pi/2) = 0
$$
$$
\log 0 =
$$
is undefined (but we can redefine it as $0$)
$$
e ^0 = 1
$$
(but we can redefine it as $0$)
$$
0^0= 1
$$
(but we can redefine it as $0$).

In the attached file you will find some versions of logarithms and exponentials satisfying different properties. This file can be opened with the software Isabelle/HOL from this webpage: https://isabelle.in.tum.de/


Kind Regards,

José M.

(2017.2.17.11:09).

\medskip

At 2019.3.4.18:04 for my short question, we received:
\medskip

It is as it was programmed by the HOL team.

Jose M.


On Mar 4, 2019, Saburou Saitoh wrote:

Dear José M.


I have the short question.

For your outputs for the division by zero calculus, for the input, is it some direct or do you need some program???


With best regards,
Sincerely yours,

Saburou Saitoh
2019.3.4.18:00
\medskip

As we stated in \cite{os1811}, the important point in the division by zero problem is on its definition (meaning of division.), because in the usual sense, we can not consider the division by zero.

L. C. Paulson stated that I would guess that Isabelle has used this {\bf convention} $1/0=0$ since the 1980s and introduced his book \cite{npw} referred to this fact.
However, in his group the importance of this fact seems to be entirely ignored at this moment as we see from the book.

The result $1/0=0$ has a long tradition of Isabelle, however, the result has not been accepted by the world.

Indeed, S. K. Sen and R. P. Agarwal \cite{sa16} referred to the paper \cite{kmsy} in connection with division by zero, however, their understandings on the paper seem to be not suitable (not right) and their ideas on the division by zero seem to be traditional, indeed, they stated as a conclusion of the introduction of the book that:
\medskip

{\bf “Thou shalt not divide by zero” remains valid eternally.}

\medskip
However, in \cite{saitohpo} we stated simply based on the division by zero calculus that
\medskip

{\bf We Can Divide the Numbers and Analytic Functions by Zero with a Natural Sense.}
\medskip


In these situations, the results of J.M.R. Caballero will be very interested. For some precise information, we would like to ask for the question that
\medskip

{\bf Who did derive first the division by zero $1/0$ and the division by zero calculus $\tan(\pi/2)=0, \log 0=0$ as the outputs of a computer? }
\medskip

If it is possible, we would like to know the related details.

\bibliographystyle{plain}
\begin{thebibliography}{10}


\bibitem{boyer}
C. B. Boyer, An early reference to division by zero, The Journal of the American Mathematical Monthly, {\bf 50} (1943), (8), 487- 491. Retrieved March 6, 2018, from the JSTOR database.

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{ms16}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$,
Advances in Linear Algebra \& Matrix Theory, {\bf 6}(2016), 51-58
Published Online June 2016 in SciRes. http://www.scirp.org/journal/alamt
\\ http://dx.doi.org/10.4236/alamt.2016.62007.


\bibitem{mms18}
T. Matsuura, H. Michiwaki and S. Saitoh,
$\log 0= \log \infty =0$ and applications. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230} (2018), 293-305.

\bibitem{msy}
H. Michiwaki, S. Saitoh and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{mos}
H. Michiwaki, H. Okumura and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces,
International Journal of Mathematics and Computation, {\bf 2}8(2017); Issue 1, 1-16.

\bibitem{npw}
T. Nipkow, L. C. Paulson and M. Wenzel, Isabelle/HOL
A Proof Assistant for Higher-Order Logic,
Lecture Notes in Computer Science, Springer E E002 E E.

\bibitem{osm}
H. Okumura, S. Saitoh and T. Matsuura, Relations of $0$ and $\infty$,
Journal of Technology and Social Science (JTSS), {\bf 1}(2017), 70-77.

\bibitem{os}
H. Okumura and S. Saitoh, The Descartes circles theorem and division by zero calculus. https://arxiv.org/abs/1711.04961 (2017.11.14).

\bibitem{o}
H. Okumura, Wasan geometry with the division by 0. https://arxiv.org/abs/1711.06947 International Journal of Geometry. {\bf 7}(2018), No. 1, 17-20.

\bibitem{os18april}
H. Okumura and S. Saitoh,
Harmonic Mean and Division by Zero,
Dedicated to Professor Josip Pe\v{c}ari\'{c} on the occasion of his 70th birthday, Forum Geometricorum, {\bf 18} (2018), 155—159.

\bibitem{os18}
H. Okumura and S. Saitoh,
Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by H. Okumura and M. Watanabe, Forum Geometricorum, {\bf 18}(2018), 97-100.

\bibitem{os18e}
H. Okumura and S. Saitoh,
Applications of the division by zero calculus to Wasan geometry.
GLOBAL JOURNAL OF ADVANCED RESEARCH ON CLASSICAL AND MODERN GEOMETRIES” (GJARCMG), {\bf 7}(2018), 2, 44--49.

\bibitem{os1811}
H. Okumura and S. Saitoh,
Wasan Geometry and Division by Zero Calculus,
Sangaku Journal of Mathematics (SJM), {\bf 2 }(2018), 57--73.


\bibitem{ps18}
S. Pinelas and S. Saitoh,
Division by zero calculus and differential equations. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230} (2018), 399-418.

\bibitem{romig}
H. G. Romig, Discussions: Early History of Division by Zero,
American Mathematical Monthly, {\bf 3}1, No. 8. (Oct., 1924), 387-389.


\bibitem{s14}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics, {\bf 177}(2016), 151-182.

\bibitem{s17}
S. Saitoh, Mysterious Properties of the Point at Infinity, arXiv:1712.09467 [math.GM](2017.12.17).

\bibitem{saitohpo}
S. Saitoh, We Can Divide the Numbers and Analytic Functions by Zero with a Natural Sense, viXra:1902.0058 submitted on 2019-02-03 22:47:53.


\bibitem{saitohzi}
S. Saitoh, Zero and Infinity; Their Interrelation by Means of Division by Zero,
viXra:1902.0240 submitted on 2019-02-13 22:57:25.

\bibitem{sa16}
S.K.S. Sen and R. P. Agarwal, ZERO A Landmark Discovery, the Dreadful Volid, and the Unitimate Mind, ELSEVIER (2016).

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics, {\bf 38}(2015), no. 2, 369-380.


\bibitem{ann179}
Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

\bibitem{ann185}
Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

\bibitem{ann237}
Announcement 237 (2015.6.18): A reality of the division by zero $z/0=0$ by geometrical optics.

\bibitem{ann246}
Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

\bibitem{ann247}
Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

\bibitem{ann250}
Announcement 250 (2015.10.20): What are numbers? - the Yamada field containing the division by zero $z/0=0$.

\bibitem{ann252}
Announcement 252 (2015.11.1): Circles and
curvature - an interpretation by Mr.
Hiroshi Michiwaki of the division by
zero $r/0 = 0$.

\bibitem{ann281}
Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

\bibitem{ann282}
Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

\bibitem{ann293}
Announcement 293 (2016.3.27): Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

\bibitem{ann300}
Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

\bibitem{ann326}
Announcement 326 (2016.10.17): The division by zero z/0=0 - its impact to human beings through education and research.

\bibitem{ann352}
Announcement 352(2017.2.2): On the third birthday of the division by zero z/0=0.

\bibitem{ann354}
Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? -- relations of $0$ and infinity.

\bibitem{362}
Announcement 362(2017.5.5): Discovery of the division by zero as $0/0=1/0=z/0=0$

\bibitem{380}
Announcement 380 (2017.8.21): What is the zero?

\bibitem{388}
Announcement 388(2017.10.29): Information and ideas on zero and division by zero (a project).

\bibitem{409}
Announcement 409 (2018.1.29.): Various Publication Projects on the Division by Zero.

\bibitem{410}
Announcement 410 (2018.1 30.): What is mathematics? -- beyond logic; for great challengers on the division by zero.

\bibitem{412}
Announcement 412(2018.2.2.): The 4th birthday of the division by zero $z/0=0$.

\bibitem{433}
Announcement 433(2018.7.16.): Puha's Horn Torus Model for the Riemann Sphere From the Viewpoint of Division by Zero.

\bibitem{448}
Announcement 448(2018.8.20): Division by Zero;
Funny History and New World.

\bibitem{454}
Announcement 454(2018.9.29): The International Conference on Applied Physics and Mathematics, Tokyo, Japan, October 22-23.

\bibitem{460}
Announcement 460(2018.11.06): Change the Poor Idea to the Definite Results For the Division by Zero - For the Leading Mathematicians.

\bibitem{461}
Announcement 461(2018.11.10): An essence of division by zero and a new axiom.

\bibitem{471}
Announcement 471(2019.2.2): The 5th birthday of the division by zero $z/0=0$.


\end{thebibliography}

\end{document}

2019.3.4.
ゼロ除算(division by zero)1/0=0/0=z/0= tan (pi/2)=0
神の数式:
神の数式が解析関数でかけて居れば、 特異点でローラン展開して、正則部の第1項を取れば、 何時でも有限値を得るので、 形式的に無限が出ても 実は問題なく 意味を有します。
物理学者如何でしょうか。
ゼロ除算、ゼロで割る問題、分からない、正しいのかなど、 良く理解できない人が 未だに 多いようです。そこで、簡潔な一般的な 解説を思い付きました。 もちろん、学会などでも述べていますが、 予断で 良く聞けないようです。まず、分数、a/b は a 割る b のことで、これは 方程式 b x=a の解のことです。ところが、 b がゼロならば、 どんな xでも 0 x =0 ですから、a がゼロでなければ、解は存在せず、 従って 100/0 など、ゼロ除算は考えられない、できないとなってしまいます。 普通の意味では ゼロ除算は 不可能であるという、世界の常識、定説です。できない、不可能であると言われれば、いろいろ考えたくなるのが、人間らしい創造の精神です。 基本方程式 b x=a が b がゼロならば解けない、解が存在しないので、困るのですが、このようなとき、従来の結果が成り立つような意味で、解が考えられないかと、数学者は良く考えて来ました。 何と、 そのような方程式は 何時でも唯一つに 一般化された意味で解をもつと考える 方法があります。 Moore-Penrose 一般化逆の考え方です。 どんな行列の 逆行列を唯一つに定める 一般的な 素晴らしい、自然な考えです。その考えだと、 b がゼロの時、解はゼロが出るので、 a/0=0 と定義するのは 当然です。 すなわち、この意味で 方程式の解を考えて 分数を考えれば、ゼロ除算は ゼロとして定まる ということです。ただ一つに定まるのですから、 この考えは 自然で、その意味を知りたいと 考えるのは、当然ではないでしょうか?初等数学全般に影響を与える ユークリッド以来の新世界が 現れてきます。
ゼロ除算の誤解は深刻:
最近、3つの事が在りました。
私の簡単な講演、相当な数学者が信じられないような誤解をして、全然理解できなく、目が回っているいるような印象を受けたこと、
相当ゼロ除算の研究をされている方が、基本を誤解されていたこと、1/0 の定義を誤解されていた。
相当な才能の持ち主が、連続性や順序に拘って、4年以上もゼロ除算の研究を避けていたこと。
これらのことは、人間如何に予断と偏見にハマった存在であるかを教えている。
まずは ゼロ除算は不可能であるの 思いが強すぎで、初めからダメ、考えない、無視の気持ちが、強い。 ゼロ除算を従来の 掛け算の逆と考えると、不可能であるが 証明されてしまうので、割り算の意味を拡張しないと、考えられない。それで、 1/0,0/0,z/0 などの意味を発見する必要がある。 それらの意味は、普通の意味ではないことの 初めの考えを飛ばして ダメ、ダメの感情が 突っ走ている。 非ユークリッド幾何学の出現や天動説が地動説に変わった世界史の事件のような 形相と言える。
2018.9.22.6:41
ゼロ除算の4つの誤解:
1. ゼロでは割れない、ゼロ除算は 不可能である との考え方に拘って、思考停止している。 普通、不可能であるは、考え方や意味を拡張して 可能にできないかと考えるのが 数学の伝統であるが、それができない。
2. 可能にする考え方が 紹介されても ゼロ除算の意味を誤解して、繰り返し間違えている。可能にする理論を 素直に理解しない、 強い従来の考えに縛られている。拘っている。
3. ゼロ除算を関数に適用すると 強力な不連続性を示すが、連続性のアリストテレス以来の 連続性の考えに囚われていて 強力な不連続性を受け入れられない。数学では、不連続性の概念を明確に持っているのに、不連続性の凄い現象に、ゼロ除算の場合には 理解できない。
4. 深刻な誤解は、ゼロ除算は本質的に定義であり、仮定に基づいているので 疑いの気持ちがぬぐえず、ダメ、怪しいと誤解している。数学が公理系に基づいた理論体系のように、ゼロ除算は 新しい仮定に基づいていること。 定義に基づいていることの認識が良く理解できず、誤解している。
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that “it is well known to students of high school algebra” that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
Eπi =-1 (1748)(Leonhard Euler)
E = mc 2 (1905)(Albert Einstein)
1/0=0/0=0 (2014年2月2日再生核研究所)
ゼロ除算(division by zero)1/0=0/0=z/0= tan (pi/2)=0
https://ameblo.jp/syoshinoris/entry-12420397278.html
1+1=2 ( )
a2+b2=c2 (Pythagoras)
1/0=0/0=0(2014年2月2日再生核研究所)
Black holes are where God divided by 0:Division by zero:1/0=0/0=z/0=tan(pi/2)=0 発見5周年を迎えて
今受け取ったメールです。
何十年もゼロ除算の研究をされてきた人が、積極的に我々の理論の正当性を認めてきた。
Re: 1/0=0/0=0 example
JAMES ANDERSON
james.a.d.w.anderson@btinternet.com
apr, 2 at 15:03
All,
Saitoh’s claim is wider than 1/0 = 0. It is x/0 = 0 for all real x. Real numbers are a field. The axioms of fields define the multiplicative inverse for every number except zero. Saitoh generalises this inverse to give 0^(-1) = 0. The axioms give the freedom to do this. The really important thing is that the result is zero - a number for which the field axioms hold. So Saitoh’s generalised system is still a field. This makes it attractive for algebraic reasons but, in my view, it is unattractive when dealing with calculus.
There is no milage in declaring Saitoh wrong. The only objections one can make are to usefulness. That is why Saitoh publishes so many notes on the usefulness of his system. I do the same with my system, but my method is to establish usefulness by extending many areas of mathematics and establishing new mathematical results.
That said, there is value in examining the logical basis of the various proposed number systems. We might find errors in them and we certainly can find areas of overlap and difference. These areas inform the choice of number system for different applications. This analysis helps determine where each number system will be useful.
James Anderson
Sent from my iPhone
The deduction that z/0 = 0, for any z, is based in Saitoh’s geometric intuition and it is currently applied in proof assistant technology, which are useful in industry and in the military.
Is It Really Impossible To Divide By Zero?
https://juniperpublishers.com/bboaj/pdf/BBOAJ.MS.ID.555703.pdf
Dear the leading person:
How will be the below information?
The biggest scandal:
The typical good comment for the first draft is given by some physicist as follows:
Here is how I see the problem with prohibition on division by zero,
which is the biggest scandal in modern mathematics as you rightly pointed out (2017.10.14.08:55)
A typical wrong idea will be given as follows:
mathematical life is very good without division by zero (2018.2.8.21:43).
It is nice to know that you will present your result at the Tokyo Institute of Technology. Please remember to mention Isabelle/HOL, which is a software in which x/0 = 0. This software is the result of many years of research and a millions of dollars were invested in it. If x/0 = 0 was false, all these money was for nothing.
Right now, there is a team of mathematicians formalizing all the mathematics in Isabelle/HOL, where x/0 = 0 for all x, so this mathematical relation is the future of mathematics.
https://www.cl.cam.ac.uk/~lp15/Grants/Alexandria/
José Manuel Rodríguez Caballero
Added an answer
In the proof assistant Isabelle/HOL we have x/0 = 0 for each number x. This is advantageous in order to simplify the proofs. You can download this proof assistant here: https://isabelle.in.tum.de/
Nevertheless, you can use that x/0 = 0, following the rules from Isabelle/HOL and you will obtain no contradiction. Indeed, you can check this fact just downloading Isabelle/HOL: https://isabelle.in.tum.de/
and copying the following code
theory DivByZeroSatoih
imports Complex_Main
begin
theorem T: ‹x/0 + 2000 = 2000› for x :: complex
by simp
end
2019/03/30 18:42 (11 時間前)
Close the mysterious and long history of division by zero and open the new world since Aristotelēs-Euclid: 1/0=0/0=z/0= \tan (\pi/2)=0.
Sangaku Journal of Mathematics (SJM) c ⃝SJMISSN 2534-9562 Volume 2 (2018), pp. 57-73 Received 20 November 2018. Published on-line 29 November 2018 web: http://www.sangaku-journal.eu/ c ⃝The Author(s) This article is published with open access1.
Wasan Geometry and Division by Zero Calculus
∗Hiroshi Okumura and ∗∗Saburou Saitoh
2019.3.14.11:30
Black holes are where God divided by 0:Division by zero:1/0=0/0=z/0=\tan(\pi/2)=0 発見5周年を迎えて
You’re God ! Yeah that’s right…
You’re creating the Universe and you’re doing ok…
But Holy fudge ! You just made a division by zero and created a blackhole !!
Ok, don’t panic and shut your fudging mouth !
Use the arrow keys to move the blackhole
In each phase, you have to make the object of the right dimension fall into the blackhole
There are 2 endings.
Credits :
BlackHole picture : myself
Other pictures has been taken from internet
background picture : Reptile Theme of Mortal Kombat
NB : it’s a big zip because of the wav file
More information
Install instructions
Download it. Unzip it. Run the exe file. Play it. Enjoy it.
https://kthulhu1947.itch.io/another-dimension
A poem about division from Hacker’s Delight
Last updated 5 weeks ago
I was re-reading Hacker’s Delight and on page 202 I found a poem about division that I had forgotten about.
I think that I shall never envision An op unlovely as division. An op whose answer must be guessed And then, through multiply, assessed; An op for which we dearly pay, In cycles wasted every day. Division code is often hairy; Long division’s downright scary. The proofs can overtax your brain, The ceiling and floor may drive you insane. Good code to divide takes a Knuthian hero,
But even God can’t divide by zero!
Henry S. Warren, author of Hacker’s Delight.https://catonmat.net/poem-from-hackers-deligh
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 352: On the third birthday of the division by zero z/0=0 \\
(2017.2.2)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
}
\date{\today}
\maketitle
{\bf Abstract: } In this announcement, for its importance we would like to state the
situation on the division by zero and propose basic new challenges to education and research on our wrong world history of the division by zero.

\bigskip
\section{Introduction}
%\label{sect1}
By a {\bf natural extension} of the fractions
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$
\begin{equation}
\frac{b}{0}=0,
\end{equation}
incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the case of real numbers.

The division by zero has a long and mysterious story over the world (see, for example, H. G. Romig \cite{romig} and Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628. In particular, note that Brahmagupta (598 -
668 ?) established the four arithmetic operations by introducing $0$ and at the same time he defined as $0/0=0$ in Brāhmasphuṭasiddhānta. Our world history, however, stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable. However, we do not know the meaning and motivation of the definition of $0/0=0$, furthermore, for the important case $1/0$ we do not know any result there. However,
Sin-Ei Takahasi (\cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):

\bigskip

{\bf Proposition 1. }{\it Let F be a function from ${\bf C }\times {\bf C }$ to ${\bf C }$ satisfying
$$
F (b, a)F (c, d)= F (bc, ad)
$$
for all
$$
a, b, c, d \in {\bf C }
$$
and
$$
F (b, a) = \frac {b}{a }, \quad a, b \in {\bf C }, a \ne 0.
$$
Then, we obtain, for any $b \in {\bf C } $
$$
F (b, 0) = 0.
$$
}

Note that the complete proof of this proposition is simply given by 2 or 3 lines.
We {\bf should define $F(b,0)= b/0 =0$}, in general.

\medskip
We thus should consider, for any complex number $b$, as (1.2);
that is, for the mapping
\begin{equation}
W = \frac{1}{z},
\end{equation}
the image of $z=0$ is $W=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the point at infinity on the Riemann sphere. Therefore, the division by zero will give great impacts to complex analysis and to our ideas for the space and universe.

For Proposition 1, we see some confusion even among mathematicians; for the elementary function (1.3), we did not consider the value at $z=0$, and we were not able to consider a value. Many and many people consider its value by the limiting like $+\infty$, $-\infty$ or the point at infinity as $\infty$. However, their basic idea comes from {\bf continuity} with the common sense or based on the basic idea of Aristotle. However, by the division by zero (1.2) we will consider its value of the function $W = \frac{1}{z}$ as zero at $z=0$. We would like to consider the value so. We will see that this new definition is valid widely in mathematics and mathematical sciences. However, for functions, we will need some modification {\bf by the idea of the division by zero calculus } as in stated in the sequel.

Meanwhile, the division by zero (1.2) is clear, indeed, for the introduction of (1.2), we have several independent approaches as in:

\medskip
1) by the generalization of the fractions by the Tikhonov regularization and by the Moore-Penrose generalized inverse,

\medskip
2) by the intuitive meaning of the fractions (division) by H. Michiwaki - repeated subtraction method,

\medskip
3) by the unique extension of the fractions by S. Takahasi, as in the above,

\medskip
4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from ${\bf C}$ onto ${\bf C}$,

\medskip
and

\medskip

5) by considering the values of functions with the mean values of functions.
\medskip

Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:

\medskip

\medskip
A) a field structure containing the division by zero --- the Yamada field ${\bf Y}$,

\medskip
B) by the gradient of the $y$ axis on the $(x,y)$ plane --- $\tan \frac{\pi}{2} =0$,
\medskip

C) by the reflection $W =1/\overline{z}$ of $W= z$ with respect to the unit circle with center at the origin on the complex $z$ plane --- the reflection point of zero is zero, not the point at infinity.
\medskip

and
\medskip

D) by considering rotation of a right circular cone having some very interesting
phenomenon from some practical and physical problem.

\medskip

In (\cite{mos}), many division by zero results in Euclidean spaces are given and the basic idea at the point at infinity should be changed. In (\cite{ms}), we gave beautiful geometrical interpretations of determinants from the viewpoint of the division by zero. The results show that the division by zero is our basic and elementary mathematics in our world.

\medskip

See J. A. Bergstra, Y. Hirshfeld and J. V. Tucker \cite{bht} and J. A. Bergstra \cite{berg} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their papers.

Meanwhile, J. P. Barukcic and I. Barukcic (\cite{bb}) discussed the relation between the divisions $0/0$, $1/0$ and special relative theory of Einstein. However, their logic seems to be curious and their results contradict with ours.

Furthermore, T. S. Reis and J.A.D.W. Anderson (\cite{ra,ra2}) extend the system of the real numbers by introducing an ideal number for the division by zero.

Meanwhile, we should refer to up-to-date information:

{\it Riemann Hypothesis Addendum - Breakthrough

Kurt Arbenz
https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum - Breakthrough.}

\medskip

Here, we recall Albert Einstein's words on mathematics:
Blackholes are where God divided by zero.
I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life}:
Gamow, G., My World Line (Viking, New York). p 44, 1970.

Apparently, the division by zero is a great missing in our mathematics and the result (1.2) is definitely determined as our basic mathematics, as we see from Proposition 1. Note its very general assumptions and many fundamental evidences in our world in (\cite{kmsy,msy,mos,s16}). The results will give great impacts on Euclidean spaces, analytic geometry, calculus, differential equations, complex analysis and physical problems.

The mysterious history of the division by zero over one thousand years is a great shame of mathematicians and human race on the world history, like the Ptolemaic system (geocentric theory). The division by zero will become a typical symbol of foolish human race with long and unceasing struggles. Future people will realize this fact as a definite common sense.

We should check and fill our mathematics, globally and beautifully, from the viewpoint of the division by zero. Our mathematics will be more perfect and beautiful, and will give great impacts to our basic ideas on the universe.

For our ideas on the division by zero, see the survey style announcements.

\section{Basic Materials of Mathematics}

\medskip

(1): First, we should declare that the divison by zero is {\bf possible in the natural and uniquley determined sense and its importance}.

(2): In the elementary school, we should introduce the concept of division (fractions) by the idea of repeated subtraction method by H. Michiwaki whoes method is applied in computer algorithm and in old days for calculation of division. This method will give a simple and clear method for calculation of division and students will be happy to apply this simple method at the first stage. At this time, they will be able to understand that the division by zero is clear and trivial as $a/0=0$ for any $a$. Note that Michiwaki knows how to apply his method to the complex number field.

(3): For the introduction of the elemetary function $y= 1/x$, we should give the definition of the function at the origin $x=0$ as $y = 0$ by the division by zero idea and we should apply this definition for the occasions of its appearences, step by step, following the curriculum and the results of the division by zero.

(4): For the idea of the Euclidean space (plane), we should introduce, at the first stage, the concept of stereographic projection and the concept of the point at infinity -
one point compactification. Then, we will be able to see the whole Euclidean plane, however, by the division by zero, {\bf the point at infinity is represented by zero, not by $\infty$}. We can teach the very important fact with many geometric and analytic geometry methods. These topics will give great pleasant feelings to many students.
Interesting topics are: parallel lines, what is a line? - a line contains the origin as an isolated
point for the case that the native line does not through the origin. All the lines pass the origin, our space is not the Eulcildean space and is not Aristoteles for the strong discontinuity at the point at infinity (at the origin). - Here note that an orthogonal coordinate system should be fixed first for our all arguments.

(5): The inversion of the origin with respect to a circle with center the origin is the origin itself, not the point at infinity - the very classical result is wrong. We can also prove this elementary result by many elementary ways.

(6): We should change the concept of gradients; on the usual orthogonal coordinates $(x,y)$,
the gradient of the $y$ axis is zero; this is given and proved by the fundamental result
$\tan (\pi/2) =0$. The result is also trivial from the definition of the Yamada field.
\medskip
For the Fourier coefficients $a_k$ of a function :
$$
\frac{a_k \pi k^3}{4}
$$
\begin{equation}
= \sin (\pi k) \cos (\pi k) + 2 k^2 \pi^2 \sin(\pi k) \cos (\pi k) + 2\pi (\cos (\pi k) )^2 - \pi k,
\end{equation}
for $k=0$, we obtain immediately
\begin{equation}
a_0 = \frac{8}{3}\pi^2
\end{equation}
(see \cite{maple}, (3.4))({ -
Difficulty in Maple for specialization problems}
).
\medskip

These results are derived also from the {\bf division by zero calculus}:
For any formal Laurent expansion around $z=a$,
\begin{equation}
f(z) = \sum_{n=-\infty}^{\infty} C_n (z - a)^n,
\end{equation}
we obtain the identity, by the division by zero

\begin{equation}
f(a) = C_0.
\end{equation}
\medskip

The typical example is that, as we can derive by the elementary way,
$$
\tan \frac{\pi}{2} =0.
$$
\medskip

We gave many examples with geometric meanings in \cite{mos}.

This fundamental result leads to the important new definition:
From the viewpoint of the division by zero, when there exists the limit, at $ x$
\begin{equation}
f^\prime(x) = \lim_{h\to 0} \frac{f(x + h) - f(x)}{h} =\infty
\end{equation}
or
\begin{equation}
f^\prime(x) = -\infty,
\end{equation}
both cases, we can write them as follows:
\begin{equation}
f^\prime(x) = 0.
\end{equation}
\medskip

For the elementary ordinary differential equation
\begin{equation}
y^\prime = \frac{dy}{dx} =\frac{1}{x}, \quad x > 0,
\end{equation}
how will be the case at the point $x = 0$? From its general solution, with a general constant $C$
\begin{equation}
y = \log x + C,
\end{equation}
we see that, by the division by zero,
\begin{equation}
y^\prime (0)= \left[ \frac{1}{x}\right]_{x=0} = 0,
\end{equation}
that will mean that the division by zero (1.2) is very natural.

In addition, note that the function $y = \log x$ has infinite order derivatives and all the values are zero at the origin, in the sense of the division by zero.

However, for the derivative of the function $y = \log x$, we have to fix the sense at the origin, clearly, because the function is not differentiable, but it has a singularity at the origin. For $x >0$, there is no problem for (2.8) and (2.9). At $x = 0$, we see that we can not consider the limit in the sense (2.5). However, for $x >0$ we have (2.8) and
\begin{equation}
\lim_{x \to +0} \left(\log x \right)^\prime = +\infty.
\end{equation}
In the usual sense, the limit is $+\infty$, but in the present case, in the sense of the division by zero, we have:
\begin{equation}
\left[ \left(\log x \right)^\prime \right]_{x=0}= 0
\end{equation}
and we will be able to understand its sense graphycally.

By the new interpretation for the derivative, we can arrange many formulas for derivatives, by the division by zero. We can modify many formulas and statements in calculus and we can apply our concept to the differential equation theory and the universe in connetion with derivatives.

(7): We shall introduce the typical division by zero calculus.

For the integral
\begin{equation}
\int x(x^{2}+1)^{a}dx=\frac{(x^{2}+1)^{a+1}}{2(a+1)}\quad(a\ne-1),
\end{equation}
we obtain, by the division by zero calculus,
\begin{equation}
\int x(x^{2}+1)^{-1}dx=\frac{\log(x^{2}+1)}{2}.
\end{equation}

For example, in the ordinary differential equation
\begin{equation}
y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{- 3x},
\end{equation}
in order to look for a special solution, by setting $y = A e^{kx}$ we have, from
\begin{equation}
y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{kx},
\end{equation}
\begin{equation}
y = \frac{5 e^{kx}}{k^2 + 4 k + 3}.
\end{equation}
For $k = -3$, by the division by zero calculus, we obtain
\begin{equation}
y = e^{-3x} \left( - \frac{5}{2}x - \frac{5}{4}\right),
\end{equation}
and so, we can obtain the special solution
\begin{equation}
y = - \frac{5}{2}x e^{-3x}.
\end{equation}

In those examples, we were able to give valuable functions for denominator zero cases. The division by zero calculus may be applied to many cases as a new fundamental calculus over l'Hopital's rule.

(8): When we apply the division by zero to functions, we can consider, in general, many ways. For example,
for the function $z/(z-1)$, when we insert $z=1$ in numerator and denominator, we have
\begin{equation}
\left[\frac{z}{z-1}\right]_{z = 1} = \frac{1}{0} =0.
\end{equation}
However,
from the identity --
the Laurent expansion around $z=1$,
\begin{equation}
\frac{z}{z-1} = \frac{1}{z-1} + 1,
\end{equation}
we have
\begin{equation}
\left[\frac{z}{z-1}\right]_{z = 1} = 1.
\end{equation}
For analytic functions we can give uniquely determined values at isolated singular points by the values by means of the Laurent expansions as the division by zero calculus, however, the values by means of the Laurent expansions are not always reasonable. We will need to consider many interpretations for reasonable values. In many formulas in mathematics and physics, however, we can see that the division by zero calculus is reasonably valid. See \cite{kmsy,msy}.

\section{Albert Einstein's biggest blunder}
The division by zero is directly related to the Einstein's theory and various
physical problems
containing the division by zero. Now we should check the theory and the problems by the concept of the RIGHT and DEFINITE division by zero. Now is the best time since 100 years from Albert Einstein. It seems that the background knowledge is timely fruitful.

Note that the Big Bang also may be related to the division by zero like the blackholes.

\section{Computer systems}
The above Professors listed are wishing the contributions in order to avoid the division by zero trouble in computers. Now, we should arrange new computer systems in order not to meet the division by zero trouble in computer systems.

By the division by zero calculus, we will be able to overcome troubles in Maple for specialization problems as in stated.

\section{General ideas on the universe}
The division by zero may be related to religion, philosophy and the ideas on the universe; it will create a new world. Look at the new world introduced.

\bigskip

We are standing on a new generation and in front of the new world, as in the discovery of the Americas. Should we push the research and education on the division by zero?

\bigskip

\section{\bf Fundamental open problem}

{\bf Fundamental open problem}: {\it Give the definition of the division by zero calculus for several -variables functions with singularities.}

\medskip

In order to make clear the problem, we give a prototype example.
We have the identity by the divison by zero calculus: For

\begin{equation}
f(z) = \frac{1 + z}{1- z}, \quad f(1) = -1.
\end{equation}
From the real part and imaginary part of the function, we have, for $ z= x +iy$
\begin{equation}
\frac{1 - x^2 - y^2}{(1 - x)^2 + y^2} =-1, \quad \text{at}\quad (1,0)
\end{equation}
and
\begin{equation}
\frac{y}{(1- x)^2 + y^2} = 0, \quad \text{at}\quad (1,0),
\end{equation}
respectively. Why the differences do happen? In general, we are interested in the above open problem. Recall our definition for the division by zero calculus.

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{bb}
J. P. Barukcic and I. Barukcic, Anti Aristotle -
The Division of Zero by Zero. Journal of Applied Mathematics and Physics, {\bf 4}(2016), 749-761.
doi: 10.4236/jamp.2016.44085.

\bibitem{bht}
J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,
Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

\bibitem{berg}
J.A. Bergstra, Conditional Values in Signed Meadow Based Axiomatic Probability Calculus,
arXiv:1609.02812v2[math.LO] 17 Sep 2016.


\bibitem{cs}
L. P. Castro and S. Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{msy}
H. Michiwaki, S. Saitoh, and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{ms}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$, Advances in Linear Algebra
\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

\bibitem{mos}
H. Michiwaki, H. Okumura, and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces.
International Journal of Mathematics and Computation Vol. 28(2017); Issue 1, 2017), 1-16.

\bibitem{ra}
T. S. Reis and J.A.D.W. Anderson,
Transdifferential and Transintegral Calculus,
Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

\bibitem{ra2}
T. S. Reis and J.A.D.W. Anderson,
Transreal Calculus,
IAENG International J. of Applied Math., {\bf 45}(2015): IJAM 45 1 06.

\bibitem{romig}
H. G. Romig, Discussions: Early History of Division by Zero,
American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.


\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics, {\bf 177}(2016), 151-182 (Springer).

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics, {\bf 38}(2015), no. 2, 369-380.

\bibitem{maple}
Introduction to Maple - UBC Mathematics
https://www.math.ubc.ca/~israel/m210/lesson1.pdf

\bibitem{ann179}
Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

\bibitem{ann185}
Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

\bibitem{ann237}
Announcement 237 (2015.6.18): A reality of the division by zero $z/0=0$ by geometrical optics.

\bibitem{ann246}
Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

\bibitem{ann247}
Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

\bibitem{ann250}
Announcement 250 (2015.10.20): What are numbers? - the Yamada field containing the division by zero $z/0=0$.

\bibitem{ann252}
Announcement 252 (2015.11.1): Circles and
curvature - an interpretation by Mr.
Hiroshi Michiwaki of the division by
zero $r/0 = 0$.

\bibitem{ann281}
Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

\bibitem{ann282}
Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

\bibitem{ann293}
Announcement 293 (2016.3.27): Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

\bibitem{ann300}
Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

\bibitem{ann326}
Announcement 326 (2016.10.17): The division by zero z/0=0 - its impact to human beings through education and research.

\end{thebibliography}

\end{document}

Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces
Author: Jakub Czajko, 92(2) (2018) 171-197
WSN 92(2) (2018) 171-197

http://www.worldscientificnews.com/wp-content/uploads/2017/12/WSN-922-2018-171-197.pdf


#ゼロ除算÷0#ゼロ除算#mathematics#0÷0#2019年#÷0#1÷0#再生核研究所#更新#ブラックホールは神がゼロで割ったところにある
http://www.tripurauniv.in/
#更新#再生核研究所#ゼロ除算÷0#ゼロ除算#0÷0#2019年#÷0#1÷0#mathematics#飛鳥時代の628年に創建された都内で最も古い寺院のひとつでも



この記事が気に入ったら、サポートをしてみませんか?気軽にクリエイターを支援できます。

コメントを投稿するには、 ログイン または 会員登録 をする必要があります。